Skip to content

Two kinds of full convolution neural network models based on multi-scale feature fusion for cloud area detection of remote sensing image.

Notifications You must be signed in to change notification settings

1921134176/Deeplearning-for-cloud-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

基于深度学习的遥感影像云区检测模型

MSCFF_V2模型是一种全卷积神经网络模型,参考了论文“Li, Z., Shen, H., Cheng, Q., Liu, Y., You, S., He, Z., 2019. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS Journal of Photogrammetry and Remote Sensing. 150, 197–212”。MSCFF_V2对论文MSCFF模型中的空洞卷积中卷积核的扩展率进行了修改,并基于Matlab Deep Learning Toolbox 14.0对模型进行了重新构建。

MSCFF_V2

UCD-Net模型是一种全卷积神经网络模型,参考了论文“ Ronneberger, O., P. Fischer and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015”。UCD-Net模型对论文U-Net模型进行了修改,添加了Batch Normalization层、修改卷积模式为same、将双线性插值上采样层修改为转置卷积层进行上采样。

UCD-Net

PictureProcess文件夹给出了数据集制作的批处理程序,可以将遥感图像制作成指定大小的输入图像,用于模型的训练。其中train_label函数通过调用Patch_to_num函数,可以批处理文件夹中的所有图像。

About

Two kinds of full convolution neural network models based on multi-scale feature fusion for cloud area detection of remote sensing image.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages