forked from Netflix/vmaf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_vmaf_training.py
executable file
·162 lines (129 loc) · 5.85 KB
/
run_vmaf_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python3
import matplotlib
matplotlib.use('Agg')
import os
import sys
import numpy as np
from vmaf.config import DisplayConfig
from vmaf.tools.misc import import_python_file, cmd_option_exists, get_cmd_option
from vmaf.core.result_store import FileSystemResultStore
from vmaf.routine import print_matplotlib_warning, train_test_vmaf_on_dataset
from vmaf.tools.stats import ListStats
__copyright__ = "Copyright 2016-2019, Netflix, Inc."
__license__ = "Apache, Version 2.0"
POOL_METHODS = ['mean', 'harmonic_mean', 'min', 'median', 'perc5', 'perc10', 'perc20']
SUBJECTIVE_MODELS = ['DMOS (default)', 'DMOS_MLE', 'MLE', 'MOS', 'SR_DMOS', 'SR_MOS', 'ZS_SR_DMOS', 'ZS_SR_MOS']
def print_usage():
print("usage: " + os.path.basename(sys.argv[0]) + \
" train_dataset_filepath feature_param_filepath model_param_filepath output_model_filepath " \
"[--subj-model subjective_model] [--cache-result] [--parallelize] [--save-plot plot_dir]\n")
print("subjective_model:\n\t" + "\n\t".join(SUBJECTIVE_MODELS) + "\n")
def main():
if len(sys.argv) < 5:
print_usage()
return 2
try:
train_dataset_filepath = sys.argv[1]
feature_param_filepath = sys.argv[2]
model_param_filepath = sys.argv[3]
output_model_filepath = sys.argv[4]
except ValueError:
print_usage()
return 2
try:
train_dataset = import_python_file(train_dataset_filepath)
feature_param = import_python_file(feature_param_filepath)
model_param = import_python_file(model_param_filepath)
except Exception as e:
print("Error: %s" % e)
return 1
cache_result = cmd_option_exists(sys.argv, 3, len(sys.argv), '--cache-result')
parallelize = cmd_option_exists(sys.argv, 3, len(sys.argv), '--parallelize')
suppress_plot = cmd_option_exists(sys.argv, 3, len(sys.argv), '--suppress-plot')
pool_method = get_cmd_option(sys.argv, 3, len(sys.argv), '--pool')
if not (pool_method is None
or pool_method in POOL_METHODS):
print('--pool can only have option among {}'.format(', '.join(POOL_METHODS)))
return 2
subj_model = get_cmd_option(sys.argv, 3, len(sys.argv), '--subj-model')
try:
if subj_model is not None:
from sureal.subjective_model import SubjectiveModel
subj_model_class = SubjectiveModel.find_subclass(subj_model)
else:
subj_model_class = None
except Exception as e:
print("Error: %s" % e)
return 1
save_plot_dir = get_cmd_option(sys.argv, 3, len(sys.argv), '--save-plot')
if cache_result:
result_store = FileSystemResultStore()
else:
result_store = None
# pooling
if pool_method == 'harmonic_mean':
aggregate_method = ListStats.harmonic_mean
elif pool_method == 'min':
aggregate_method = np.min
elif pool_method == 'median':
aggregate_method = np.median
elif pool_method == 'perc5':
aggregate_method = ListStats.perc5
elif pool_method == 'perc10':
aggregate_method = ListStats.perc10
elif pool_method == 'perc20':
aggregate_method = ListStats.perc20
else: # None or 'mean'
aggregate_method = np.mean
logger = None
try:
if suppress_plot:
raise AssertionError
from vmaf import plt
fig, ax = plt.subplots(figsize=(5, 5), nrows=1, ncols=1)
train_test_vmaf_on_dataset(train_dataset=train_dataset, test_dataset=None,
feature_param=feature_param, model_param=model_param,
train_ax=ax, test_ax=None,
result_store=result_store,
parallelize=parallelize,
logger=logger,
output_model_filepath=output_model_filepath,
aggregate_method=aggregate_method,
subj_model_class=subj_model_class,
)
bbox = {'facecolor':'white', 'alpha':0.5, 'pad':20}
ax.annotate('Training Set', xy=(0.1, 0.85), xycoords='axes fraction', bbox=bbox)
# ax.set_xlim([-10, 110])
# ax.set_ylim([-10, 110])
plt.tight_layout()
if save_plot_dir is None:
DisplayConfig.show()
else:
DisplayConfig.show(write_to_dir=save_plot_dir)
except ImportError:
print_matplotlib_warning()
train_test_vmaf_on_dataset(train_dataset=train_dataset, test_dataset=None,
feature_param=feature_param, model_param=model_param,
train_ax=None, test_ax=None,
result_store=result_store,
parallelize=parallelize,
logger=logger,
output_model_filepath=output_model_filepath,
aggregate_method=aggregate_method,
subj_model_class=subj_model_class,
)
except AssertionError:
train_test_vmaf_on_dataset(train_dataset=train_dataset, test_dataset=None,
feature_param=feature_param, model_param=model_param,
train_ax=None, test_ax=None,
result_store=result_store,
parallelize=parallelize,
logger=logger,
output_model_filepath=output_model_filepath,
aggregate_method=aggregate_method,
subj_model_class=subj_model_class,
)
return 0
if __name__ == '__main__':
ret = main()
exit(ret)