-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgraph_cuts_loss.py
290 lines (248 loc) · 13.5 KB
/
graph_cuts_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# -*- coding: utf-8 -*-
import torch
import torch.nn
# original 2D GC loss with no approximation
class GC_2D_Original(torch.nn.Module):
def __init__(self, lmda, sigma):
super(GC_2D_Original, self).__init__()
self.lmda = lmda
self.sigma = sigma
def forward(self, input, target):
# input: B * C * H * W, after sigmoid operation
# target: B * C * H * W
# region term equals to BCE
bce = torch.nn.BCELoss()
region_term = bce(input=input, target=target)
# boundary_term
'''
x5 x1 x6
x2 x x4
x7 x3 x8
'''
# vertical: x <-> x1, x3 <-> x1
target_vert = torch.abs(target[:, :, 1:, :] - target[:, :, :-1, :]) # delta(yu, yv)
input_vert = input[:, :, 1:, :] - input[:, :, :-1, :] # pu - pv
# horizontal: x <-> x2, x4 <-> x
target_hori = torch.abs(target[:, :, :, 1:] - target[:, :, :, :-1]) # delta(yu, yv)
input_hori = input[:, :, :, 1:] - input[:, :, :, :-1] # pu - pv
# diagonal1: x <-> x5, x8 <-> x
target_diag1 = torch.abs(target[:, :, 1:, 1:] - target[:, :, :-1, :-1]) # delta(yu, yv)
input_diag1 = input[:, :, 1:, 1:] - input[:, :, :-1, :-1] # pu - pv
# diagonal2: x <-> x7, x6 <-> x
target_diag2 = torch.abs(target[:, :, 1:, :-1] - target[:, :, :-1, 1:]) # delta(yu, yv)
input_diag2 = input[:, :, 1:, :-1] - input[:, :, :-1, 1:] # pu - pv
dist1 = 1.0 # dist(u, v), e.g. x <-> x1
dist2 = 2.0 ** 0.5 # dist(u, v) , e.g. x <-> x6
p1 = torch.exp(-(input_vert ** 2) / (2 * self.sigma * self.sigma)) / dist1 * target_vert
p2 = torch.exp(-(input_hori ** 2) / (2 * self.sigma * self.sigma)) / dist1 * target_hori
p3 = torch.exp(-(input_diag1 ** 2) / (2 * self.sigma * self.sigma)) / dist2 * target_diag1
p4 = torch.exp(-(input_diag2 ** 2) / (2 * self.sigma * self.sigma)) / dist2 * target_diag2
boundary_term = (torch.sum(p1) / torch.sum(target_vert) +
torch.sum(p2) / torch.sum(target_hori) +
torch.sum(p3) / torch.sum(target_diag1) +
torch.sum(p4) / torch.sum(target_diag2)) / 4 # equation (5)
return self.lmda * region_term + boundary_term
# 2D GC loss with boundary approximation in equation (7) to eliminate sigma
class GC_2D(torch.nn.Module):
def __init__(self, lmda):
super(GC_2D, self).__init__()
self.lmda = lmda
def forward(self, input, target):
# input: B * C * H * W, after sigmoid operation
# target: B * C * H * W
# region term equals to BCE
bce = torch.nn.BCELoss()
region_term = bce(input=input, target=target)
# boundary_term
'''
x5 x1 x6
x2 x x4
x7 x3 x8
'''
# vertical: x <-> x1, x3 <-> x1
target_vert = torch.abs(target[:, :, 1:, :] - target[:, :, :-1, :]) # delta(yu, yv)
input_vert = torch.abs(input[:, :, 1:, :] - input[:, :, :-1, :]) # |pu - pv|
# horizontal: x <-> x2, x4 <-> x
target_hori = torch.abs(target[:, :, :, 1:] - target[:, :, :, :-1]) # delta(yu, yv)
input_hori = torch.abs(input[:, :, :, 1:] - input[:, :, :, :-1]) # |pu - pv|
# diagonal1: x <-> x5, x8 <-> x
target_diag1 = torch.abs(target[:, :, 1:, 1:] - target[:, :, :-1, :-1]) # delta(yu, yv)
input_diag1 = torch.abs(input[:, :, 1:, 1:] - input[:, :, :-1, :-1]) # |pu - pv|
# diagonal2: x <-> x7, x6 <-> x
target_diag2 = torch.abs(target[:, :, 1:, :-1] - target[:, :, :-1, 1:]) # delta(yu, yv)
input_diag2 = torch.abs(input[:, :, 1:, :-1] - input[:, :, :-1, 1:]) # |pu - pv|
p1 = input_vert * target_vert
p2 = input_hori * target_hori
p3 = input_diag1 * target_diag1
p4 = input_diag2 * target_diag2
boundary_term = 1 - (torch.sum(p1) / torch.sum(target_vert) +
torch.sum(p2) / torch.sum(target_hori) +
torch.sum(p3) / torch.sum(target_diag1) +
torch.sum(p4) / torch.sum(target_diag2)) / 4 # equation (7), and normalized to (0,1)
return self.lmda * region_term + boundary_term
# 3D GC loss with boundary approximation in equation (7) to eliminate sigma
class GC_3D_v1(torch.nn.Module):
def __init__(self, lmda):
super(GC_3D_v1, self).__init__()
self.lmda = lmda
def forward(self, input, target):
# input: B * C * H * W * D, after sigmoid operation
# target: B * C * H * W * D
# region term
bce = torch.nn.BCELoss()
region_term = bce(input=input, target=target)
# boundary term
'''
example [[[[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]],[[19, 20, 21], [22, 23, 24], [25, 26, 27]]]]]
element 14 has 26 neighborhoods, a total of 13 operations
'''
# x5 <-> x14, x14 <-> x23
input_1 = torch.abs(input[..., 1:, :, :] - input[..., :-1, :, :]) # |pu - pv|
target_1 = torch.abs(target[..., 1:, :, :] - target[..., :-1, :, :]) # delta(yu, yv)
# x11 <-> x14, x14 <-> x17
input_2 = torch.abs(input[..., :, 1:, :] - input[..., :, :-1, :])
target_2 = torch.abs(target[..., :, 1:, :] - target[..., :, :-1, :])
# x13 <-> x14, x14 <-> x15
input_3 = torch.abs(input[..., :, :, 1:] - input[..., :, :, :-1])
target_3 = torch.abs(target[..., :, :, 1:] - target[..., :, :, :-1])
# x2 <-> x14, x14 <-> x26
input_4 = torch.abs(input[..., 1:, 1:, :] - input[..., :-1, :-1, :])
target_4 = torch.abs(target[..., 1:, 1:, :] - target[..., :-1, :-1, :])
# x8 <-> x14, x14 <-> x20
input_5 = torch.abs(input[..., 1:, :-1, :] - input[..., :-1, 1:, :])
target_5 = torch.abs(target[..., 1:, :-1, :] - target[..., :-1, 1:, :])
# x10 <-> x14, x14 <-> x18
input_6 = torch.abs(input[..., :, 1:, 1:] - input[..., :, :-1, :-1])
target_6 = torch.abs(target[..., :, 1:, 1:] - target[..., :, :-1, :-1])
# x12 <-> x14, x14 <-> x16
input_7 = torch.abs(input[..., :, 1:, :-1] - input[..., :, :-1, 1:])
target_7 = torch.abs(target[..., :, 1:, :-1] - target[..., :, :-1, 1:])
# x6 <-> x14, x14 <-> x22
input_8 = torch.abs(input[..., 1:, :, :-1] - input[..., :-1, :, 1:])
target_8 = torch.abs(target[..., 1:, :, :-1] - target[..., :-1, :, 1:])
# x4 <-> x14, x14 <-> x24
input_9 = torch.abs(input[..., 1:, :, 1:] - input[..., :-1, :, :-1])
target_9 = torch.abs(target[..., 1:, :, 1:] - target[..., :-1, :, :-1])
# x9 <-> x14, x14 <-> x19
input_10 = torch.abs(input[..., 1:, :-1, :-1] - input[..., :-1, 1:, 1:])
target_10 = torch.abs(target[..., 1:, :-1, :-1] - target[..., :-1, 1:, 1:])
# x3 <-> x14, x14 <-> x25
input_11 = torch.abs(input[..., 1:, 1:, :-1] - input[..., :-1, :-1, 1:])
target_11 = torch.abs(target[..., 1:, 1:, :-1] - target[..., :-1, :-1, 1:])
# x1 <-> x14, x14 <-> x27
input_12 = torch.abs(input[..., :-1, :-1, :-1] - input[..., 1:, 1:, 1:])
target_12 = torch.abs(target[..., :-1, :-1, :-1] - target[..., 1:, 1:, 1:])
# x7 <-> x14, x14 <-> x21
input_13 = torch.abs(input[..., :-1, 1:, :-1] - input[..., 1:, :-1, 1:])
target_13 = torch.abs(target[..., :-1, 1:, :-1] - target[..., 1:, :-1, 1:])
p1 = input_1 * target_1
p2 = input_2 * target_2
p3 = input_3 * target_3
p4 = input_4 * target_4
p5 = input_5 * target_5
p6 = input_6 * target_6
p7 = input_7 * target_7
p8 = input_8 * target_8
p9 = input_9 * target_9
p10 = input_10 * target_10
p11 = input_11 * target_11
p12 = input_12 * target_12
p13 = input_13 * target_13
smooth = 1e-5 # avoid zero division when target is zero
boundary_term = 1 - (torch.sum(p1) / (torch.sum(target_1) + smooth) +
torch.sum(p2) / (torch.sum(target_2) + smooth) +
torch.sum(p3) / (torch.sum(target_3) + smooth) +
torch.sum(p4) / (torch.sum(target_4) + smooth) +
torch.sum(p5) / (torch.sum(target_5) + smooth) +
torch.sum(p6) / (torch.sum(target_6) + smooth) +
torch.sum(p7) / (torch.sum(target_7) + smooth) +
torch.sum(p8) / (torch.sum(target_8) + smooth) +
torch.sum(p9) / (torch.sum(target_9) + smooth) +
torch.sum(p10) / (torch.sum(target_10) + smooth) +
torch.sum(p11) / (torch.sum(target_11) + smooth) +
torch.sum(p12) / (torch.sum(target_12) + smooth) +
torch.sum(p13) / (torch.sum(target_13) + smooth)) / 13 # equation (5), and normalized to (0,1)
return self.lmda * region_term + boundary_term
# this 3D version further eliminates the abs operation
class GC_3D_v2(torch.nn.Module):
def __init__(self, lmda):
super(GC_3D_v2, self).__init__()
self.lmda = lmda
def forward(self, input, target):
# input: B * C * H * W * D, after sigmoid operation
# target: B * C * H * W * D
# region term
bce = torch.nn.BCELoss()
region_term = bce(input=input, target=target)
# boundary term
'''
example [[[[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[10, 11, 12], [13, 14, 15], [16, 17, 18]],[[19, 20, 21], [22, 23, 24], [25, 26, 27]]]]]
element 14 has 26 neighborhoods, a total of 13 operations
'''
# x5 <-> x14, x14 <-> x23
input_1 = input[..., 1:, :, :] - input[..., :-1, :, :]
target_1 = target[..., 1:, :, :] - target[..., :-1, :, :]
# x11 <-> x14, x14 <-> x17
input_2 = input[..., :, 1:, :] - input[..., :, :-1, :]
target_2 = target[..., :, 1:, :] - target[..., :, :-1, :]
# x13 <-> x14, x14 <-> x15
input_3 = input[..., :, :, 1:] - input[..., :, :, :-1]
target_3 = target[..., :, :, 1:] - target[..., :, :, :-1]
# x2 <-> x14, x14 <-> x26
input_4 = input[..., 1:, 1:, :] - input[..., :-1, :-1, :]
target_4 = target[..., 1:, 1:, :] - target[..., :-1, :-1, :]
# x8 <-> x14, x14 <-> x20
input_5 = input[..., 1:, :-1, :] - input[..., :-1, 1:, :]
target_5 = target[..., 1:, :-1, :] - target[..., :-1, 1:, :]
# x10 <-> x14, x14 <-> x18
input_6 = input[..., :, 1:, 1:] - input[..., :, :-1, :-1]
target_6 = target[..., :, 1:, 1:] - target[..., :, :-1, :-1]
# x12 <-> x14, x14 <-> x16
input_7 = input[..., :, 1:, :-1] - input[..., :, :-1, 1:]
target_7 = target[..., :, 1:, :-1] - target[..., :, :-1, 1:]
# x6 <-> x14, x14 <-> x22
input_8 = input[..., 1:, :, :-1] - input[..., :-1, :, 1:]
target_8 = target[..., 1:, :, :-1] - target[..., :-1, :, 1:]
# x4 <-> x14, x14 <-> x24
input_9 = input[..., 1:, :, 1:] - input[..., :-1, :, :-1]
target_9 = target[..., 1:, :, 1:] - target[..., :-1, :, :-1]
# x9 <-> x14, x14 <-> x19
input_10 = input[..., 1:, :-1, :-1] - input[..., :-1, 1:, 1:]
target_10 = target[..., 1:, :-1, :-1] - target[..., :-1, 1:, 1:]
# x3 <-> x14, x14 <-> x25
input_11 = input[..., 1:, 1:, :-1] - input[..., :-1, :-1, 1:]
target_11 = target[..., 1:, 1:, :-1] - target[..., :-1, :-1, 1:]
# x1 <-> x14, x14 <-> x27
input_12 = input[..., :-1, :-1, :-1] - input[..., 1:, 1:, 1:]
target_12 = target[..., :-1, :-1, :-1] - target[..., 1:, 1:, 1:]
# x7 <-> x14, x14 <-> x21
input_13 = input[..., :-1, 1:, :-1] - input[..., 1:, :-1, 1:]
target_13 = target[..., :-1, 1:, :-1] - target[..., 1:, :-1, 1:]
p1 = input_1 * target_1
p2 = input_2 * target_2
p3 = input_3 * target_3
p4 = input_4 * target_4
p5 = input_5 * target_5
p6 = input_6 * target_6
p7 = input_7 * target_7
p8 = input_8 * target_8
p9 = input_9 * target_9
p10 = input_10 * target_10
p11 = input_11 * target_11
p12 = input_12 * target_12
p13 = input_13 * target_13
smooth = 1e-5 # avoid zero division when target only has one class
boundary_term = 1 - (torch.sum(p1) / (torch.sum(target_1 * target_1) + smooth) +
torch.sum(p2) / (torch.sum(target_2 * target_2) + smooth) +
torch.sum(p3) / (torch.sum(target_3 * target_3) + smooth) +
torch.sum(p4) / (torch.sum(target_4 * target_4) + smooth) +
torch.sum(p5) / (torch.sum(target_5 * target_5) + smooth) +
torch.sum(p6) / (torch.sum(target_6 * target_6) + smooth) +
torch.sum(p7) / (torch.sum(target_7 * target_7) + smooth) +
torch.sum(p8) / (torch.sum(target_8 * target_8) + smooth) +
torch.sum(p9) / (torch.sum(target_9 * target_9) + smooth) +
torch.sum(p10) / (torch.sum(target_10 * target_10) + smooth) +
torch.sum(p11) / (torch.sum(target_11 * target_11) + smooth) +
torch.sum(p12) / (torch.sum(target_12 * target_12) + smooth) +
torch.sum(p13) / (torch.sum(target_13 * target_13) + smooth)) / 13
return self.lmda * region_term + boundary_term