-
Notifications
You must be signed in to change notification settings - Fork 1
/
generate_tfrecord.py
148 lines (124 loc) · 5.23 KB
/
generate_tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import io
import cv2
import pandas as pd
import numpy as np
import tensorflow as tf
import contextlib2
from PIL import Image
from collections import namedtuple, OrderedDict
from object_detection.utils import dataset_util
from object_detection.dataset_tools import tf_record_creation_util
dir = "/home/yzy/Documents/ccpd_dataset/ccpd_base"
flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
flags.DEFINE_string('label', '', 'Name of class label')
flags.DEFINE_string('img_path', '', 'Path to images')
FLAGS = flags.FLAGS
def save_csv(root_dir=dir, test_split=0.05):
# print all files
count = 0
dat = []
# sort to csv file
for f in os.listdir(root_dir):
bounding_box = f.split('-')[2]
x_min, y_min = tuple(bounding_box.split('_')[0].split('&'))
x_max, y_max = tuple(bounding_box.split('_')[1].split('&'))
dat.append([f, x_min, y_min, x_max, y_max, "lp"])
count+=1
if count % 1000 == 0:
print(count)
df = pd.DataFrame(dat, columns=['filename', "xmin", "ymin", "xmax", "ymax", "class"])
train_mask = np.random.rand(len(df)) > test_split
df[train_mask].to_csv("ccpd_dataset_train.csv", index=False)
df[~train_mask].to_csv("ccpd_dataset_test.csv", index=False)
def class_text_to_int(row_label):
if row_label == FLAGS.label: # 'ship':
return 1
# comment upper if statement and uncomment these statements for multiple labelling
# if row_label == FLAGS.label0:
# return 1
# elif row_label == FLAGS.label1:
# return 0
else:
return None
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
# creat tfrecord for one image
def create_tf_example(group, path):
with tf.io.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
filename = group.filename.encode('utf8')
image_format = b'jpg'
# check if the image format is matching with your images.
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
# width, height = image.size
width, height = 720, 720
for index, row in group.object.iterrows():
# random crop
top = max(0, row['ymax']-720)
bottom = min(1163-720, row['ymin'])
crop_top = np.random.randint(top, bottom)
ymax = row['ymax']-crop_top
ymin = row['ymin']-crop_top
image = image.crop((0, crop_top, 720, crop_top+720))
buf = io.BytesIO()
image.save(buf, format='JPEG')
encoded_jpg = buf.getvalue()
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(ymin / height) #row['ymin'] / height)
ymaxs.append(ymax / height) #row['ymax'] / height)
#ymins.append(row['ymin'] / height)
#ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
#writer = tf.io.TFRecordWriter(FLAGS.output_path)
path = FLAGS.img_path #os.path.join(os.getcwd(), FLAGS.img_path)
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
num_shards= int(np.ceil(len(examples) // 1000))
count = 0
with contextlib2.ExitStack() as tf_record_close_stack:
output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords(
tf_record_close_stack, FLAGS.output_path, num_shards)
for index, group in enumerate(grouped):
tf_example = create_tf_example(group, path)
output_shard_index = index % num_shards
output_tfrecords[output_shard_index].write(tf_example.SerializeToString())
# writer.write(tf_example.SerializeToString())
count += 1
if count % 10000 == 0:
print(count)
# writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == '__main__':
# save_csv()
tf.compat.v1.app.run()