-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_func.py
486 lines (444 loc) · 18 KB
/
eval_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os.path as osp
import numpy as np
from scipy.io import loadmat
from sklearn.metrics import average_precision_score
from utils.km import run_kuhn_munkres
from utils.utils import write_json
def _compute_iou(a, b):
x1 = max(a[0], b[0])
y1 = max(a[1], b[1])
x2 = min(a[2], b[2])
y2 = min(a[3], b[3])
inter = max(0, x2 - x1) * max(0, y2 - y1)
union = (a[2] - a[0]) * (a[3] - a[1]) + (b[2] - b[0]) * (b[3] - b[1]) - inter
return inter * 1.0 / union
def eval_detection(
gallery_dataset, gallery_dets, det_thresh=0.5, iou_thresh=0.5, labeled_only=False
):
"""
gallery_det (list of ndarray): n_det x [x1, y1, x2, y2, score] per image
det_thresh (float): filter out gallery detections whose scores below this
iou_thresh (float): treat as true positive if IoU is above this threshold
labeled_only (bool): filter out unlabeled background people
"""
assert len(gallery_dataset) == len(gallery_dets)
annos = gallery_dataset.annotations
y_true, y_score = [], []
count_gt, count_tp = 0, 0
for anno, det in zip(annos, gallery_dets):
gt_boxes = anno["boxes"]
if labeled_only:
# exclude the unlabeled people (pid == 5555)
inds = np.where(anno["pids"].ravel() != 5555)[0]
if len(inds) == 0:
continue
gt_boxes = gt_boxes[inds]
num_gt = gt_boxes.shape[0]
if det != []:
det = np.asarray(det)
inds = np.where(det[:, 4].ravel() >= det_thresh)[0]
det = det[inds]
num_det = det.shape[0]
else:
num_det = 0
if num_det == 0:
count_gt += num_gt
continue
ious = np.zeros((num_gt, num_det), dtype=np.float32)
for i in range(num_gt):
for j in range(num_det):
ious[i, j] = _compute_iou(gt_boxes[i], det[j, :4])
tfmat = ious >= iou_thresh
# for each det, keep only the largest iou of all the gt
for j in range(num_det):
largest_ind = np.argmax(ious[:, j])
for i in range(num_gt):
if i != largest_ind:
tfmat[i, j] = False
# for each gt, keep only the largest iou of all the det
for i in range(num_gt):
largest_ind = np.argmax(ious[i, :])
for j in range(num_det):
if j != largest_ind:
tfmat[i, j] = False
for j in range(num_det):
y_score.append(det[j, -1])
y_true.append(tfmat[:, j].any())
count_tp += tfmat.sum()
count_gt += num_gt
det_rate = count_tp * 1.0 / count_gt
ap = average_precision_score(y_true, y_score) * det_rate
print("{} detection:".format("labeled only" if labeled_only else "all"))
print(" recall = {:.2%}".format(det_rate))
if not labeled_only:
print(" ap = {:.2%}".format(ap))
return det_rate, ap
def eval_search_cuhk(
gallery_dataset,
query_dataset,
gallery_dets,
gallery_feats,
query_box_feats,
query_dets,
query_feats,
k1=10,
k2=3,
det_thresh=0.5,
cbgm=False,
gallery_size=100,
):
"""
gallery_dataset/query_dataset: an instance of BaseDataset
gallery_det (list of ndarray): n_det x [x1, x2, y1, y2, score] per image
gallery_feat (list of ndarray): n_det x D features per image
query_feat (list of ndarray): D dimensional features per query image
det_thresh (float): filter out gallery detections whose scores below this
gallery_size (int): gallery size [-1, 50, 100, 500, 1000, 2000, 4000]
-1 for using full set
"""
assert len(gallery_dataset) == len(gallery_dets)
assert len(gallery_dataset) == len(gallery_feats)
assert len(query_dataset) == len(query_box_feats)
use_full_set = gallery_size == -1
fname = "TestG{}".format(gallery_size if not use_full_set else 50)
protoc = loadmat(osp.join(gallery_dataset.root, "annotation/test/train_test", fname + ".mat"))
protoc = protoc[fname].squeeze()
# mapping from gallery image to (det, feat)
annos = gallery_dataset.annotations
name_to_det_feat = {}
for anno, det, feat in zip(annos, gallery_dets, gallery_feats):
name = anno["img_name"]
if det != []:
scores = det[:, 4].ravel()
inds = np.where(scores >= det_thresh)[0]
if len(inds) > 0:
name_to_det_feat[name] = (det[inds], feat[inds])
aps = []
accs = []
topk = [1, 5, 10]
ret = {"image_root": gallery_dataset.img_prefix, "results": []}
for i in range(len(query_dataset)):
y_true, y_score = [], []
imgs, rois = [], []
count_gt, count_tp = 0, 0
# get L2-normalized feature vector
feat_q = query_box_feats[i].ravel()
# ignore the query image
query_imname = str(protoc["Query"][i]["imname"][0, 0][0])
query_roi = protoc["Query"][i]["idlocate"][0, 0][0].astype(np.int32)
query_roi[2:] += query_roi[:2]
query_gt = []
tested = set([query_imname])
name2sim = {}
name2gt = {}
sims = []
imgs_cbgm = []
# 1. Go through the gallery samples defined by the protocol
for item in protoc["Gallery"][i].squeeze():
gallery_imname = str(item[0][0])
# some contain the query (gt not empty), some not
gt = item[1][0].astype(np.int32)
count_gt += gt.size > 0
# compute distance between query and gallery dets
if gallery_imname not in name_to_det_feat:
continue
det, feat_g = name_to_det_feat[gallery_imname]
# no detection in this gallery, skip it
if det.shape[0] == 0:
continue
# get L2-normalized feature matrix NxD
assert feat_g.size == np.prod(feat_g.shape[:2])
feat_g = feat_g.reshape(feat_g.shape[:2])
# compute cosine similarities
sim = feat_g.dot(feat_q).ravel()
if gallery_imname in name2sim:
continue
name2sim[gallery_imname] = sim
name2gt[gallery_imname] = gt
sims.extend(list(sim))
imgs_cbgm.extend([gallery_imname] * len(sim))
# 2. Go through the remaining gallery images if using full set
if use_full_set:
for gallery_imname in gallery_dataset.imgs:
if gallery_imname in tested:
continue
if gallery_imname not in name_to_det_feat:
continue
det, feat_g = name_to_det_feat[gallery_imname]
# get L2-normalized feature matrix NxD
assert feat_g.size == np.prod(feat_g.shape[:2])
feat_g = feat_g.reshape(feat_g.shape[:2])
# compute cosine similarities
sim = feat_g.dot(feat_q).ravel()
# guaranteed no target query in these gallery images
label = np.zeros(len(sim), dtype=np.int32)
y_true.extend(list(label))
y_score.extend(list(sim))
imgs.extend([gallery_imname] * len(sim))
rois.extend(list(det))
if cbgm:
# -------- Context Bipartite Graph Matching (CBGM) ------- #
sims = np.array(sims)
imgs_cbgm = np.array(imgs_cbgm)
# only process the top-k1 gallery images for efficiency
inds = np.argsort(sims)[-k1:]
imgs_cbgm = set(imgs_cbgm[inds])
for img in imgs_cbgm:
sim = name2sim[img]
det, feat_g = name_to_det_feat[img]
# only regard the people with top-k2 detection confidence
# in the query image as context information
qboxes = query_dets[i][:k2]
qfeats = query_feats[i][:k2]
assert (
query_roi - qboxes[0][:4]
).sum() <= 0.001, "query_roi must be the first one in pboxes"
# build the bipartite graph and run Kuhn-Munkres (K-M) algorithm
# to find the best match
graph = []
for indx_i, pfeat in enumerate(qfeats):
for indx_j, gfeat in enumerate(feat_g):
graph.append((indx_i, indx_j, (pfeat * gfeat).sum()))
km_res, max_val = run_kuhn_munkres(graph)
# revise the similarity between query person and its matching
for indx_i, indx_j, _ in km_res:
# 0 denotes the query roi
if indx_i == 0:
sim[indx_j] = max_val
break
for gallery_imname, sim in name2sim.items():
gt = name2gt[gallery_imname]
det, feat_g = name_to_det_feat[gallery_imname]
# assign label for each det
label = np.zeros(len(sim), dtype=np.int32)
if gt.size > 0:
w, h = gt[2], gt[3]
gt[2:] += gt[:2]
query_gt.append({"img": str(gallery_imname), "roi": list(map(float, list(gt)))})
iou_thresh = min(0.5, (w * h * 1.0) / ((w + 10) * (h + 10)))
inds = np.argsort(sim)[::-1]
sim = sim[inds]
det = det[inds]
# only set the first matched det as true positive
for j, roi in enumerate(det[:, :4]):
if _compute_iou(roi, gt) >= iou_thresh:
label[j] = 1
count_tp += 1
break
y_true.extend(list(label))
y_score.extend(list(sim))
imgs.extend([gallery_imname] * len(sim))
rois.extend(list(det))
tested.add(gallery_imname)
# 3. Compute AP for this query (need to scale by recall rate)
y_score = np.asarray(y_score)
y_true = np.asarray(y_true)
assert count_tp <= count_gt
recall_rate = count_tp * 1.0 / count_gt
ap = 0 if count_tp == 0 else average_precision_score(y_true, y_score) * recall_rate
aps.append(ap)
inds = np.argsort(y_score)[::-1]
y_score = y_score[inds]
y_true = y_true[inds]
accs.append([min(1, sum(y_true[:k])) for k in topk])
# 4. Save result for JSON dump
new_entry = {
"query_img": str(query_imname),
"query_roi": list(map(float, list(query_roi))),
"query_gt": query_gt,
"gallery": [],
}
# only record wrong results
if int(y_true[0]):
continue
# only save top-10 predictions
for k in range(10):
new_entry["gallery"].append(
{
"img": str(imgs[inds[k]]),
"roi": list(map(float, list(rois[inds[k]]))),
"score": float(y_score[k]),
"correct": int(y_true[k]),
}
)
ret["results"].append(new_entry)
print("search ranking:")
print(" mAP = {:.2%}".format(np.mean(aps)))
accs = np.mean(accs, axis=0)
for i, k in enumerate(topk):
print(" top-{:2d} = {:.2%}".format(k, accs[i]))
write_json(ret, "vis/results.json")
ret["mAP"] = np.mean(aps)
ret["accs"] = accs
return ret
def eval_search_prw(
gallery_dataset,
query_dataset,
gallery_dets,
gallery_feats,
query_box_feats,
query_dets,
query_feats,
k1=30,
k2=4,
det_thresh=0.5,
cbgm=False,
gallery_size=None, # not used in PRW
ignore_cam_id=True,
):
"""
gallery_det (list of ndarray): n_det x [x1, x2, y1, y2, score] per image
gallery_feat (list of ndarray): n_det x D features per image
query_feat (list of ndarray): D dimensional features per query image
det_thresh (float): filter out gallery detections whose scores below this
gallery_size (int): -1 for using full set
ignore_cam_id (bool): Set to True acoording to CUHK-SYSU,
although it's a common practice to focus on cross-cam match only.
"""
assert len(gallery_dataset) == len(gallery_dets)
assert len(gallery_dataset) == len(gallery_feats)
assert len(query_dataset) == len(query_box_feats)
annos = gallery_dataset.annotations
name_to_det_feat = {}
for anno, det, feat in zip(annos, gallery_dets, gallery_feats):
name = anno["img_name"]
scores = det[:, 4].ravel()
inds = np.where(scores >= det_thresh)[0]
if len(inds) > 0:
name_to_det_feat[name] = (det[inds], feat[inds])
aps = []
accs = []
topk = [1, 5, 10]
ret = {"image_root": gallery_dataset.img_prefix, "results": []}
for i in range(len(query_dataset)):
y_true, y_score = [], []
imgs, rois = [], []
count_gt, count_tp = 0, 0
feat_p = query_box_feats[i].ravel()
query_imname = query_dataset.annotations[i]["img_name"]
query_roi = query_dataset.annotations[i]["boxes"]
query_pid = query_dataset.annotations[i]["pids"]
query_cam = query_dataset.annotations[i]["cam_id"]
# Find all occurence of this query
gallery_imgs = []
for x in annos:
if query_pid in x["pids"] and x["img_name"] != query_imname:
gallery_imgs.append(x)
query_gts = {}
for item in gallery_imgs:
query_gts[item["img_name"]] = item["boxes"][item["pids"] == query_pid]
# Construct gallery set for this query
if ignore_cam_id:
gallery_imgs = []
for x in annos:
if x["img_name"] != query_imname:
gallery_imgs.append(x)
else:
gallery_imgs = []
for x in annos:
if x["img_name"] != query_imname and x["cam_id"] != query_cam:
gallery_imgs.append(x)
name2sim = {}
sims = []
imgs_cbgm = []
# 1. Go through all gallery samples
for item in gallery_imgs:
gallery_imname = item["img_name"]
# some contain the query (gt not empty), some not
count_gt += gallery_imname in query_gts
# compute distance between query and gallery dets
if gallery_imname not in name_to_det_feat:
continue
det, feat_g = name_to_det_feat[gallery_imname]
# get L2-normalized feature matrix NxD
assert feat_g.size == np.prod(feat_g.shape[:2])
feat_g = feat_g.reshape(feat_g.shape[:2])
# compute cosine similarities
sim = feat_g.dot(feat_p).ravel()
if gallery_imname in name2sim:
continue
name2sim[gallery_imname] = sim
sims.extend(list(sim))
imgs_cbgm.extend([gallery_imname] * len(sim))
if cbgm:
sims = np.array(sims)
imgs_cbgm = np.array(imgs_cbgm)
inds = np.argsort(sims)[-k1:]
imgs_cbgm = set(imgs_cbgm[inds])
for img in imgs_cbgm:
sim = name2sim[img]
det, feat_g = name_to_det_feat[img]
qboxes = query_dets[i][:k2]
qfeats = query_feats[i][:k2]
# assert (
# query_roi - qboxes[0][:4]
# ).sum() <= 0.001, "query_roi must be the first one in pboxes"
graph = []
for indx_i, pfeat in enumerate(qfeats):
for indx_j, gfeat in enumerate(feat_g):
graph.append((indx_i, indx_j, (pfeat * gfeat).sum()))
km_res, max_val = run_kuhn_munkres(graph)
for indx_i, indx_j, _ in km_res:
if indx_i == 0:
sim[indx_j] = max_val
break
for gallery_imname, sim in name2sim.items():
det, feat_g = name_to_det_feat[gallery_imname]
# assign label for each det
label = np.zeros(len(sim), dtype=np.int32)
if gallery_imname in query_gts:
gt = query_gts[gallery_imname].ravel()
w, h = gt[2] - gt[0], gt[3] - gt[1]
iou_thresh = min(0.5, (w * h * 1.0) / ((w + 10) * (h + 10)))
inds = np.argsort(sim)[::-1]
sim = sim[inds]
det = det[inds]
# only set the first matched det as true positive
for j, roi in enumerate(det[:, :4]):
if _compute_iou(roi, gt) >= iou_thresh:
label[j] = 1
count_tp += 1
break
y_true.extend(list(label))
y_score.extend(list(sim))
imgs.extend([gallery_imname] * len(sim))
rois.extend(list(det))
# 2. Compute AP for this query (need to scale by recall rate)
y_score = np.asarray(y_score)
y_true = np.asarray(y_true)
assert count_tp <= count_gt
recall_rate = count_tp * 1.0 / count_gt
ap = 0 if count_tp == 0 else average_precision_score(y_true, y_score) * recall_rate
aps.append(ap)
inds = np.argsort(y_score)[::-1]
y_score = y_score[inds]
y_true = y_true[inds]
accs.append([min(1, sum(y_true[:k])) for k in topk])
# 4. Save result for JSON dump
new_entry = {
"query_img": str(query_imname),
"query_roi": list(map(float, list(query_roi.squeeze()))),
"query_gt": query_gts,
"gallery": [],
}
# only save top-10 predictions
for k in range(10):
new_entry["gallery"].append(
{
"img": str(imgs[inds[k]]),
"roi": list(map(float, list(rois[inds[k]]))),
"score": float(y_score[k]),
"correct": int(y_true[k]),
}
)
ret["results"].append(new_entry)
print("search ranking:")
mAP = np.mean(aps)
print(" mAP = {:.2%}".format(mAP))
accs = np.mean(accs, axis=0)
for i, k in enumerate(topk):
print(" top-{:2d} = {:.2%}".format(k, accs[i]))
# write_json(ret, "vis/results.json")
ret["mAP"] = np.mean(aps)
ret["accs"] = accs
return ret