-
Notifications
You must be signed in to change notification settings - Fork 541
/
Copy pathWGAN.py
234 lines (189 loc) · 8.91 KB
/
WGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import utils, torch, time, os, pickle
import numpy as np
import torch.nn as nn
import torch.optim as optim
from dataloader import dataloader
class generator(nn.Module):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S
def __init__(self, input_dim=100, output_dim=1, input_size=32):
super(generator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.input_size = input_size
self.fc = nn.Sequential(
nn.Linear(self.input_dim, 1024),
nn.BatchNorm1d(1024),
nn.ReLU(),
nn.Linear(1024, 128 * (self.input_size // 4) * (self.input_size // 4)),
nn.BatchNorm1d(128 * (self.input_size // 4) * (self.input_size // 4)),
nn.ReLU(),
)
self.deconv = nn.Sequential(
nn.ConvTranspose2d(128, 64, 4, 2, 1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.ConvTranspose2d(64, self.output_dim, 4, 2, 1),
nn.Tanh(),
)
utils.initialize_weights(self)
def forward(self, input):
x = self.fc(input)
x = x.view(-1, 128, (self.input_size // 4), (self.input_size // 4))
x = self.deconv(x)
return x
class discriminator(nn.Module):
# Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
# Architecture : (64)4c2s-(128)4c2s_BL-FC1024_BL-FC1_S
def __init__(self, input_dim=1, output_dim=1, input_size=32):
super(discriminator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.input_size = input_size
self.conv = nn.Sequential(
nn.Conv2d(self.input_dim, 64, 4, 2, 1),
nn.LeakyReLU(0.2),
nn.Conv2d(64, 128, 4, 2, 1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2),
)
self.fc = nn.Sequential(
nn.Linear(128 * (self.input_size // 4) * (self.input_size // 4), 1024),
nn.BatchNorm1d(1024),
nn.LeakyReLU(0.2),
nn.Linear(1024, self.output_dim),
# nn.Sigmoid(),
)
utils.initialize_weights(self)
def forward(self, input):
x = self.conv(input)
x = x.view(-1, 128 * (self.input_size // 4) * (self.input_size // 4))
x = self.fc(x)
return x
class WGAN(object):
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 100
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
self.input_size = args.input_size
self.z_dim = 62
self.c = 0.01 # clipping value
self.n_critic = 5 # the number of iterations of the critic per generator iteration
# load dataset
self.data_loader = dataloader(self.dataset, self.input_size, self.batch_size)
data = self.data_loader.__iter__().__next__()[0]
# networks init
self.G = generator(input_dim=self.z_dim, output_dim=data.shape[1], input_size=self.input_size)
self.D = discriminator(input_dim=data.shape[1], output_dim=1, input_size=self.input_size)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# fixed noise
self.sample_z_ = torch.rand((self.batch_size, self.z_dim))
if self.gpu_mode:
self.sample_z_ = self.sample_z_.cuda()
def train(self):
self.train_hist = {}
self.train_hist['D_loss'] = []
self.train_hist['G_loss'] = []
self.train_hist['per_epoch_time'] = []
self.train_hist['total_time'] = []
self.y_real_, self.y_fake_ = torch.ones(self.batch_size, 1), torch.zeros(self.batch_size, 1)
if self.gpu_mode:
self.y_real_, self.y_fake_ = self.y_real_.cuda(), self.y_fake_.cuda()
self.D.train()
print('training start!!')
start_time = time.time()
for epoch in range(self.epoch):
self.G.train()
epoch_start_time = time.time()
for iter, (x_, _) in enumerate(self.data_loader):
if iter == self.data_loader.dataset.__len__() // self.batch_size:
break
z_ = torch.rand((self.batch_size, self.z_dim))
if self.gpu_mode:
x_, z_ = x_.cuda(), z_.cuda()
# update D network
self.D_optimizer.zero_grad()
D_real = self.D(x_)
D_real_loss = -torch.mean(D_real)
G_ = self.G(z_)
D_fake = self.D(G_)
D_fake_loss = torch.mean(D_fake)
D_loss = D_real_loss + D_fake_loss
D_loss.backward()
self.D_optimizer.step()
# clipping D
for p in self.D.parameters():
p.data.clamp_(-self.c, self.c)
if ((iter+1) % self.n_critic) == 0:
# update G network
self.G_optimizer.zero_grad()
G_ = self.G(z_)
D_fake = self.D(G_)
G_loss = -torch.mean(D_fake)
self.train_hist['G_loss'].append(G_loss.item())
G_loss.backward()
self.G_optimizer.step()
self.train_hist['D_loss'].append(D_loss.item())
if ((iter + 1) % 100) == 0:
print("Epoch: [%2d] [%4d/%4d] D_loss: %.8f, G_loss: %.8f" %
((epoch + 1), (iter + 1), self.data_loader.dataset.__len__() // self.batch_size, D_loss.item(), G_loss.item()))
self.train_hist['per_epoch_time'].append(time.time() - epoch_start_time)
with torch.no_grad():
self.visualize_results((epoch+1))
self.train_hist['total_time'].append(time.time() - start_time)
print("Avg one epoch time: %.2f, total %d epochs time: %.2f" % (np.mean(self.train_hist['per_epoch_time']),
self.epoch, self.train_hist['total_time'][0]))
print("Training finish!... save training results")
self.save()
utils.generate_animation(self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name,
self.epoch)
utils.loss_plot(self.train_hist, os.path.join(self.save_dir, self.dataset, self.model_name), self.model_name)
def visualize_results(self, epoch, fix=True):
self.G.eval()
if not os.path.exists(self.result_dir + '/' + self.dataset + '/' + self.model_name):
os.makedirs(self.result_dir + '/' + self.dataset + '/' + self.model_name)
tot_num_samples = min(self.sample_num, self.batch_size)
image_frame_dim = int(np.floor(np.sqrt(tot_num_samples)))
if fix:
""" fixed noise """
samples = self.G(self.sample_z_)
else:
""" random noise """
sample_z_ = torch.rand((self.batch_size, self.z_dim))
if self.gpu_mode:
sample_z_ = sample_z_.cuda()
samples = self.G(sample_z_)
if self.gpu_mode:
samples = samples.cpu().data.numpy().transpose(0, 2, 3, 1)
else:
samples = samples.data.numpy().transpose(0, 2, 3, 1)
samples = (samples + 1) / 2
utils.save_images(samples[:image_frame_dim * image_frame_dim, :, :, :], [image_frame_dim, image_frame_dim],
self.result_dir + '/' + self.dataset + '/' + self.model_name + '/' + self.model_name + '_epoch%03d' % epoch + '.png')
def save(self):
save_dir = os.path.join(self.save_dir, self.dataset, self.model_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
torch.save(self.G.state_dict(), os.path.join(save_dir, self.model_name + '_G.pkl'))
torch.save(self.D.state_dict(), os.path.join(save_dir, self.model_name + '_D.pkl'))
with open(os.path.join(save_dir, self.model_name + '_history.pkl'), 'wb') as f:
pickle.dump(self.train_hist, f)
def load(self):
save_dir = os.path.join(self.save_dir, self.dataset, self.model_name)
self.G.load_state_dict(torch.load(os.path.join(save_dir, self.model_name + '_G.pkl')))
self.D.load_state_dict(torch.load(os.path.join(save_dir, self.model_name + '_D.pkl')))