-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathWTM_run.py
92 lines (80 loc) · 3.96 KB
/
WTM_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File : WTM_run.py
@Time : 2020/10/04 21:03:13
@Author : Leilan Zhang
@Version : 1.0
@Contact : [email protected]
@Desc : None
'''
import os
import re
import torch
import pickle
import argparse
import logging
import time
from models import WTM
from utils import *
from dataset import DocDataset
from multiprocessing import cpu_count
parser = argparse.ArgumentParser('WLDA topic model')
parser.add_argument('--taskname',type=str,default='cnews10k',help='Taskname e.g cnews10k')
parser.add_argument('--no_below',type=int,default=5,help='The lower bound of count for words to keep, e.g 10')
parser.add_argument('--no_above',type=float,default=0.005,help='The ratio of upper bound of count for words to keep, e.g 0.3')
parser.add_argument('--num_epochs',type=int,default=100,help='Number of iterations (set to 100 as default, but 1000+ is recommended.)')
parser.add_argument('--n_topic',type=int,default=20,help='Num of topics')
parser.add_argument('--bkpt_continue',type=bool,default=False,help='Whether to load a trained model as initialization and continue training.')
parser.add_argument('--use_tfidf',type=bool,default=False,help='Whether to use the tfidf feature for the BOW input')
parser.add_argument('--rebuild',action='store_true',help='Whether to rebuild the corpus, such as tokenization, build dict etc.(default False)')
parser.add_argument('--dist',type=str,default='gmm_std',help='Prior distribution for latent vectors: (dirichlet,gmm_std,gmm_ctm,gaussian etc.)')
parser.add_argument('--batch_size',type=int,default=512,help='Batch size (default=512)')
parser.add_argument('--criterion',type=str,default='cross_entropy',help='The criterion to calculate the loss, e.g cross_entropy, bce_softmax, bce_sigmoid')
parser.add_argument('--auto_adj',action='store_true',help='To adjust the no_above ratio automatically (default:rm top 20)')
parser.add_argument('--ckpt',type=str,default=None,help='Checkpoint path')
parser.add_argument('--lang',type=str,default="zh",help='Language of the dataset')
args = parser.parse_args()
def main():
global args
taskname = args.taskname
no_below = args.no_below
no_above = args.no_above
num_epochs = args.num_epochs
n_topic = args.n_topic
n_cpu = cpu_count()-2 if cpu_count()>2 else 2
bkpt_continue = args.bkpt_continue
use_tfidf = args.use_tfidf
rebuild = args.rebuild
dist = args.dist
batch_size = args.batch_size
criterion = args.criterion
auto_adj = args.auto_adj
ckpt = args.ckpt
lang = args.lang
device = torch.device('cuda')
docSet = DocDataset(taskname,lang=lang,no_below=no_below,no_above=no_above,rebuild=rebuild,use_tfidf=False)
if auto_adj:
no_above = docSet.topk_dfs(topk=20)
docSet = DocDataset(taskname,lang=lang,no_below=no_below,no_above=no_above,rebuild=rebuild,use_tfidf=False)
voc_size = docSet.vocabsize
print('voc size:',voc_size)
if ckpt:
checkpoint=torch.load(ckpt)
param=checkpoint["param"]
param.update({"device": device})
model = WTM(**param)
model.train(train_data=docSet,batch_size=batch_size,test_data=docSet,num_epochs=num_epochs,log_every=10,beta=1.0,ckpt=checkpoint)
else:
model = WTM(bow_dim=voc_size,n_topic=n_topic,device=device,dist=dist,taskname=taskname,dropout=0.4)
model.train(train_data=docSet,batch_size=batch_size,test_data=docSet,num_epochs=num_epochs,log_every=10,beta=1.0)
model.evaluate(test_data=docSet)
save_name = f'./ckpt/WTM_{taskname}_tp{n_topic}_{dist}_{time.strftime("%Y-%m-%d-%H-%M", time.localtime())}.ckpt'
torch.save(model.wae.state_dict(),save_name)
txt_lst, embeds = model.get_embed(train_data=docSet, num=1000)
with open('topic_dist_wtm.txt','w',encoding='utf-8') as wfp:
for t,e in zip(txt_lst,embeds):
wfp.write(f'{e}:{t}\n')
pickle.dump({'txts':txt_lst,'embeds':embeds},open('wtm_embeds.pkl','wb'))
if __name__ == "__main__":
main()