-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcomplex_edge.py
191 lines (163 loc) · 6.53 KB
/
complex_edge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
A module for complex hierarchical graph.
"""
from abc import abstractmethod
from queue import Queue
from typing import List, Set, Dict
import tensorflow as tf
from evolution.encoding.base import Edge
from evolution.encoding.base import Vertex
class ComplexEdge(Edge):
"""
Complex operation class. This operation encapsulates a small graph of
nodes and operations. The graph follows such invariants:
1. The graph has no circle
2. Output is always reachable from input (implied from 3)
3. All the vertices should be reachable from input
4. All the vertices could reach output
Class level invariants:
1. input_vertex is not None
2. output_vertex is not None
3. vertices_topo_order always contains vertices sorted in topological order
4. Each edge's end_vertex should point to the the end vertex of this
edge, when the edge is in the graph
"""
def __init__(self, name: str) -> None:
super().__init__()
self.input_vertex = Vertex(name='input')
self.output_vertex = Vertex(name='output')
self.vertices_topo_order: List[Vertex] = [self.output_vertex,
self.input_vertex]
self.name = name
self._layers_below = -1
def deep_copy_graph(self, copy: 'ComplexEdge') -> None:
"""
Deep copy the graph to another complex edge
Assuming the invariants holds
Args:
copy: To which the graph should be copied to
Returns:
None
"""
for _ in range(len(self.vertices_topo_order) - 2):
copy.vertices_topo_order.append(Vertex())
# Clear existing edges
copy.input_vertex.out_bound_edges.clear()
# Copy edges
for i, vertex in enumerate(self.vertices_topo_order):
copy_vertex = copy.vertices_topo_order[i]
for edge in vertex.out_bound_edges:
copy_edge = edge.deep_copy()
copy_vertex.out_bound_edges.append(copy_edge)
# Check here to make mypy happy
if edge.end_vertex:
copy_edge.end_vertex = copy.vertices_topo_order[
edge.end_vertex.order]
copy.sort_vertices()
def deep_copy_info(self, copy: 'ComplexEdge') -> None:
copy.name = self.name
copy._layers_below = self._layers_below
@abstractmethod
def deep_copy(self) -> Edge:
pass
def _topo_sort_recursion(self, current: Vertex,
vertex_list: List[Vertex],
accessing_set: Set[int],
finished_status: Dict[int, bool]) -> bool:
"""
Args:
current:
vertex_list:
accessing_set:
finished_status:
Returns:
"""
current_ref = id(current)
if current_ref in accessing_set:
raise RuntimeError('Found cycle in graph')
if current_ref in finished_status:
return finished_status[current_ref]
accessing_set.add(current_ref)
to_remove: List[Edge] = []
for out_edge in current.out_bound_edges:
if out_edge.end_vertex:
# If can't reach output, the vertex will be removed, as well
# as the edge to it.
if not self._topo_sort_recursion(out_edge.end_vertex,
vertex_list, accessing_set,
finished_status):
to_remove.append(out_edge)
can_reach_output = (current is self.output_vertex
or len(to_remove) != len(current.out_bound_edges))
finished_status[current_ref] = can_reach_output
accessing_set.remove(current_ref)
for edge in to_remove:
current.out_bound_edges.remove(edge)
edge.end_vertex = None
if can_reach_output:
vertex_list.append(current)
return can_reach_output
def sort_vertices(self) -> None:
"""
Sort the vertices in topological order. Maintains the invariant that
vertices_topo_order contains vertices sorted in topological order.
Returns:
None
"""
vertex_list: List[Vertex] = []
accessing_set: Set[int] = set()
finished_status: Dict[int, bool] = dict()
self._topo_sort_recursion(self.input_vertex, vertex_list,
accessing_set, finished_status)
self.vertices_topo_order = vertex_list
for order, vertex in enumerate(vertex_list):
vertex.order = order
def check_output_reachable(self) -> bool:
"""
Checks for the invariant "All the vertices should be reachable from
input". Assumes there's no circle in the graph.
Returns:
True if output is reachable, False otherwise.
"""
# Standard BFS
visited_set: Set[Vertex] = set()
queue: Queue = Queue()
visited_set.add(self.input_vertex)
queue.put(self.input_vertex)
while not queue.empty():
current = queue.get()
for out_edge in current.out_bound_edges:
if out_edge.end_vertex in visited_set:
continue
new_vertex = out_edge.end_vertex
queue.put(new_vertex)
visited_set.add(new_vertex)
if new_vertex == self.output_vertex:
return True
return False
@abstractmethod
def mutate(self) -> bool:
pass
def invalidate_layer_count(self) -> None:
self._layers_below = -1
# Invalidate everything below
for vertex in self.vertices_topo_order:
for edge in vertex.out_bound_edges:
edge.invalidate_layer_count()
def build(self, x: tf.Tensor) -> tf.Tensor:
for vertex in self.vertices_topo_order:
vertex.reset()
with tf.name_scope('%s.layer_%d' % (self.name, self.level)):
self.input_vertex.collect(x)
for vertex in reversed(self.vertices_topo_order[1:]):
vertex.submit()
return self.output_vertex.aggregate()
@property
def level(self) -> int:
if self._layers_below < 1:
max_layers = 1
for vertex in self.vertices_topo_order:
for operation in vertex.out_bound_edges:
max_layers = max(max_layers, operation.level)
self._layers_below = max_layers + 1
return self._layers_below