We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,UNet多次修改学习率(e-3/-4/-5/-6/-7) 训练,但是预测结果图全黑,请问 该怎么办呢? 按照网上说的方法修改后,还是全黑。只有lr=e-6,epoch=200时预测结果显示,但是效果非常不好!
The text was updated successfully, but these errors were encountered:
使用 DeepGlobe 的原始数据进行训练和测试,预期能够完全复现论文中的结果。 预测结果全黑有可能和训练数据或者 python 版本有关,需要检查是否和要求的版本一致。
Sorry, something went wrong.
我试了一下,发现只是看起来全黑,但打印mask.max()发现结果是6.7,也就是说灰度值太小了,导致人眼看起来全黑。因此只要把预测的mask的灰度映射到0-255就好了,代码如下: mask = mask - mask.min() mask = mask * 255 / mask.max()
No branches or pull requests
您好,UNet多次修改学习率(e-3/-4/-5/-6/-7) 训练,但是预测结果图全黑,请问 该怎么办呢? 按照网上说的方法修改后,还是全黑。只有lr=e-6,epoch=200时预测结果显示,但是效果非常不好!
The text was updated successfully, but these errors were encountered: