-
Notifications
You must be signed in to change notification settings - Fork 0
/
FL_ResNet_HAM10000.py
456 lines (357 loc) · 17.2 KB
/
FL_ResNet_HAM10000.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#===========================================================
# Federated learning: ResNet18 on HAM10000
# HAM10000 dataset: Tschandl, P.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions (2018), doi:10.7910/DVN/DBW86T
# We have three versions of our implementations
# Version1: without using socket and no DP+PixelDP
# Version2: with using socket but no DP+PixelDP
# Version3: without using socket but with DP+PixelDP
# This program is Version1: Single program simulation
# ===========================================================
import torch
from torch import nn
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
from pandas import DataFrame
import pandas as pd
from sklearn.model_selection import train_test_split
from PIL import Image
from glob import glob
import math
import random
import numpy as np
import os
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import copy
SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
print(torch.cuda.get_device_name(0))
#===================================================================
program = "FL ResNet18 on HAM10000"
print(f"---------{program}----------") # this is to identify the program in the slurm outputs files
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# To print in color during test/train
def prRed(skk): print("\033[91m {}\033[00m" .format(skk))
def prGreen(skk): print("\033[92m {}\033[00m" .format(skk))
#===================================================================
# No. of users
num_users = 5
epochs = 200
frac = 1
lr = 0.0001
#==============================================================================================================
# Client Side Program
#==============================================================================================================
class DatasetSplit(Dataset):
def __init__(self, dataset, idxs):
self.dataset = dataset
self.idxs = list(idxs)
def __len__(self):
return len(self.idxs)
def __getitem__(self, item):
image, label = self.dataset[self.idxs[item]]
return image, label
# Client-side functions associated with Training and Testing
class LocalUpdate(object):
def __init__(self, idx, lr, device, dataset_train = None, dataset_test = None, idxs = None, idxs_test = None):
self.idx = idx
self.device = device
self.lr = lr
self.local_ep = 1
self.loss_func = nn.CrossEntropyLoss()
self.selected_clients = []
self.ldr_train = DataLoader(DatasetSplit(dataset_train, idxs), batch_size = 256, shuffle = True)
self.ldr_test = DataLoader(DatasetSplit(dataset_test, idxs_test), batch_size = 256, shuffle = True)
def train(self, net):
net.train()
# train and update
#optimizer = torch.optim.SGD(net.parameters(), lr = self.lr, momentum = 0.5)
optimizer = torch.optim.Adam(net.parameters(), lr = self.lr)
epoch_acc = []
epoch_loss = []
for iter in range(self.local_ep):
batch_acc = []
batch_loss = []
for batch_idx, (images, labels) in enumerate(self.ldr_train):
images, labels = images.to(self.device), labels.to(self.device)
optimizer.zero_grad()
#---------forward prop-------------
fx = net(images)
# calculate loss
loss = self.loss_func(fx, labels)
# calculate accuracy
acc = calculate_accuracy(fx, labels)
#--------backward prop--------------
loss.backward()
optimizer.step()
batch_loss.append(loss.item())
batch_acc.append(acc.item())
prRed('Client{} Train => Local Epoch: {} \tAcc: {:.3f} \tLoss: {:.4f}'.format(self.idx,
iter, acc.item(), loss.item()))
epoch_loss.append(sum(batch_loss)/len(batch_loss))
epoch_acc.append(sum(batch_acc)/len(batch_acc))
return net.state_dict(), sum(epoch_loss) / len(epoch_loss), sum(epoch_acc) / len(epoch_acc)
def evaluate(self, net):
net.eval()
epoch_acc = []
epoch_loss = []
with torch.no_grad():
batch_acc = []
batch_loss = []
for batch_idx, (images, labels) in enumerate(self.ldr_test):
images, labels = images.to(self.device), labels.to(self.device)
#---------forward prop-------------
fx = net(images)
# calculate loss
loss = self.loss_func(fx, labels)
# calculate accuracy
acc = calculate_accuracy(fx, labels)
batch_loss.append(loss.item())
batch_acc.append(acc.item())
prGreen('Client{} Test => \tLoss: {:.4f} \tAcc: {:.3f}'.format(self.idx, loss.item(), acc.item()))
epoch_loss.append(sum(batch_loss)/len(batch_loss))
epoch_acc.append(sum(batch_acc)/len(batch_acc))
return sum(epoch_loss) / len(epoch_loss), sum(epoch_acc) / len(epoch_acc)
#=============================================================================
# Data loading
#=============================================================================
df = pd.read_csv('data/HAM10000_metadata.csv')
print(df.head())
lesion_type = {
'nv': 'Melanocytic nevi',
'mel': 'Melanoma',
'bkl': 'Benign keratosis-like lesions ',
'bcc': 'Basal cell carcinoma',
'akiec': 'Actinic keratoses',
'vasc': 'Vascular lesions',
'df': 'Dermatofibroma'
}
# merging both folders of HAM1000 dataset -- part1 and part2 -- into a single directory
imageid_path = {os.path.splitext(os.path.basename(x))[0]: x
for x in glob(os.path.join("data", '*', '*.jpg'))}
#print("path---------------------------------------", imageid_path.get)
df['path'] = df['image_id'].map(imageid_path.get)
df['cell_type'] = df['dx'].map(lesion_type.get)
df['target'] = pd.Categorical(df['cell_type']).codes
print(df['cell_type'].value_counts())
print(df['target'].value_counts())
#==============================================================
# Custom dataset prepration in Pytorch format
class SkinData(Dataset):
def __init__(self, df, transform = None):
self.df = df
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, index):
X = Image.open(self.df['path'][index]).resize((64, 64))
y = torch.tensor(int(self.df['target'][index]))
if self.transform:
X = self.transform(X)
return X, y
#=====================================================================================================
# dataset_iid() will create a dictionary to collect the indices of the data samples randomly for each client
# IID HAM10000 datasets will be created based on this
def dataset_iid(dataset, num_users):
num_items = int(len(dataset)/num_users)
dict_users, all_idxs = {}, [i for i in range(len(dataset))]
for i in range(num_users):
dict_users[i] = set(np.random.choice(all_idxs, num_items, replace = False))
all_idxs = list(set(all_idxs) - dict_users[i])
return dict_users
#=============================================================================
# Train-test split
train, test = train_test_split(df, test_size = 0.2)
train = train.reset_index()
test = test.reset_index()
#=============================================================================
# Data preprocessing
#=============================================================================
# Data preprocessing: Transformation
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
train_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.Pad(3),
transforms.RandomRotation(10),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(mean = mean, std = std)
])
test_transforms = transforms.Compose([
transforms.Pad(3),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize(mean = mean, std = std)
])
# With augmentation
dataset_train = SkinData(train, transform = train_transforms)
dataset_test = SkinData(test, transform = test_transforms)
#-----------------------------------------------
dict_users = dataset_iid(dataset_train, num_users)
dict_users_test = dataset_iid(dataset_test, num_users)
#====================================================================================================
# Server Side Program
#====================================================================================================
def calculate_accuracy(fx, y):
preds = fx.max(1, keepdim=True)[1]
correct = preds.eq(y.view_as(preds)).sum()
acc = 100.00 *correct.float()/preds.shape[0]
return acc
#=============================================================================
# Model definition: ResNet18
#=============================================================================
# building a ResNet18 Architecture
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet18(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
net_glob = ResNet18(BasicBlock, [2, 2, 2, 2], 7) #7 is my numbr of classes
if torch.cuda.device_count() > 1:
print("We use",torch.cuda.device_count(), "GPUs")
net_glob = nn.DataParallel(net_glob) # to use the multiple GPUs
net_glob.to(device)
print(net_glob)
#===========================================================================================
# Federated averaging: FedAvg
def FedAvg(w):
w_avg = copy.deepcopy(w[0])
for k in w_avg.keys():
for i in range(1, len(w)):
w_avg[k] += w[i][k]
w_avg[k] = torch.div(w_avg[k], len(w))
return w_avg
#====================================================
net_glob.train()
# copy weights
w_glob = net_glob.state_dict()
loss_train_collect = []
acc_train_collect = []
loss_test_collect = []
acc_test_collect = []
for iter in range(epochs):
w_locals, loss_locals_train, acc_locals_train, loss_locals_test, acc_locals_test = [], [], [], [], []
m = max(int(frac * num_users), 1)
idxs_users = np.random.choice(range(num_users), m, replace = False)
# Training/Testing simulation
for idx in idxs_users: # each client
local = LocalUpdate(idx, lr, device, dataset_train = dataset_train, dataset_test = dataset_test, idxs = dict_users[idx], idxs_test = dict_users_test[idx])
# Training ------------------
w, loss_train, acc_train = local.train(net = copy.deepcopy(net_glob).to(device))
w_locals.append(copy.deepcopy(w))
loss_locals_train.append(copy.deepcopy(loss_train))
acc_locals_train.append(copy.deepcopy(acc_train))
# Testing -------------------
loss_test, acc_test = local.evaluate(net = copy.deepcopy(net_glob).to(device))
loss_locals_test.append(copy.deepcopy(loss_test))
acc_locals_test.append(copy.deepcopy(acc_test))
# Federation process
w_glob = FedAvg(w_locals)
print("------------------------------------------------")
print("------ Federation process at Server-Side -------")
print("------------------------------------------------")
# update global model --- copy weight to net_glob -- distributed the model to all users
net_glob.load_state_dict(w_glob)
# Train/Test accuracy
acc_avg_train = sum(acc_locals_train) / len(acc_locals_train)
acc_train_collect.append(acc_avg_train)
acc_avg_test = sum(acc_locals_test) / len(acc_locals_test)
acc_test_collect.append(acc_avg_test)
# Train/Test loss
loss_avg_train = sum(loss_locals_train) / len(loss_locals_train)
loss_train_collect.append(loss_avg_train)
loss_avg_test = sum(loss_locals_test) / len(loss_locals_test)
loss_test_collect.append(loss_avg_test)
print('------------------- SERVER ----------------------------------------------')
print('Train: Round {:3d}, Avg Accuracy {:.3f} | Avg Loss {:.3f}'.format(iter, acc_avg_train, loss_avg_train))
print('Test: Round {:3d}, Avg Accuracy {:.3f} | Avg Loss {:.3f}'.format(iter, acc_avg_test, loss_avg_test))
print('-------------------------------------------------------------------------')
#===================================================================================
print("Training and Evaluation completed!")
#===============================================================================
# Save output data to .excel file (we use for comparision plots)
round_process = [i for i in range(1, len(acc_train_collect)+1)]
df = DataFrame({'round': round_process,'acc_train':acc_train_collect, 'acc_test':acc_test_collect})
file_name = program+".xlsx"
df.to_excel(file_name, sheet_name= "v1_test", index = False)
#=============================================================================
# Program Completed
#=============================================================================