-
Notifications
You must be signed in to change notification settings - Fork 1
/
build_map.py
577 lines (487 loc) · 18.9 KB
/
build_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
#!/usr/bin/python
# This program creates the "Touristiness" and "Interesting remote places"
# map overlay images. For its input, it requires
# * GeoNames cities datafile, obtained from
# http://download.geonames.org/export/dump/cities1000.zip
# (unzip the file before use)
# * Internet access for queries to Panoramio API
#
# Panoramio API query results are optionally cached on disk between runs;
# this requires ca 340Mbytes of disk space. If cache is empty or disabled,
# the program runs for ca 4 hours (Panoramio requests are done in parallel
# with Python threads); with cache filled (if all Panoramio queries are
# already done) it runs for ca 2 minutes. RAM usage is ca 100Mbytes.
#
# Output images are 720x720 paletted PNGs with alpha channel in palette.
# Resolution is 1/4 coordinate degrees, which results in 1440x720 pixels
# for the whole world. Since Google Maps does not support overlay images
# spanning the whole globe, the world is broken down into two 720x720
# images, one for each hemisphere.
from __future__ import with_statement
import sys,math,operator,re,time,cPickle,threading,socket,httplib,libxml2
import png # from http://packages.python.org/pypng/
mintreelevel=2
maxtreelevel=5
if len(sys.argv) < 1+4:
print 'Usage: build_map.py <cachedir (empty string disables caching)> ' + \
'<geonames cities1000.txt input filename> ' + \
'<touristiness map output filename prefix> ' + \
'<interesting remote places map output filename prefix>'
sys.exit(1)
cachedir=sys.argv[1]
geonames_cities_fname=sys.argv[2]
touristiness_image_fname_prefix=sys.argv[3]
remote_interesting_image_fname_prefix=sys.argv[4]
print_debug=False
thread_local_data=threading.local()
threads_stop_flag=False
touristy_spots=[]
touristy_spots_lock=threading.Lock()
slots_per_degree=(2**mintreelevel)
########################################################################
######################## Panoramio API access ##########################
########################################################################
libxml2.registerErrorHandler(lambda x,y:x,None)
panoramio_hostname='www.panoramio.com'
panoramio_ipaddr=socket.gethostbyname(panoramio_hostname)
def do_http_request(url):
global thread_local_data,threads_stop_flag
global panoramio_hostname,panoramio_ipaddr
for try_nr in range(10):
if threads_stop_flag:
return None
try:
if not hasattr(thread_local_data,'conn'):
thread_local_data.conn=httplib.HTTPConnection(
panoramio_ipaddr)
thread_local_data.conn.request('GET',url,
headers={'Host':panoramio_hostname})
r=thread_local_data.conn.getresponse()
data=r.read()
if r.status == 200:
break
if (r.status >= 400 and r.status < 500) or r.status in (301,302):
print >> sys.stderr,url,'received HTTP error',r.status,r.reason
return None
print >> sys.stderr,url,'Received HTTP error',r.status,r.reason
except (httplib.BadStatusLine,httplib.CannotSendRequest,
ValueError,socket.gaierror),err:
print >> sys.stderr,url,'httplib error:',err
thread_local_data.conn.close()
del thread_local_data.conn
print >> sys.stderr,url,'Pausing...'
time.sleep(20)
else:
return None
data=re.sub(r'<django.templatetags.i18n.TranslateNode [^>]*>','',data)
try:
return libxml2.parseDoc(data)
except libxml2.parserError:
print >> sys.stderr,'Error parsing this XML response:\n',data
return None
username_re=re.compile('panoramio.com/user/([0-9]+)')
def fetch_nr_of_photos(lat_range,lon_range):
global print_debug
doc=do_http_request('/panoramio.kml?BBOX=%s,%s,%s,%s' % \
(lon_range[0],lat_range[0],lon_range[1],lat_range[1]))
if print_debug:
sys.stdout.write('.')
sys.stdout.flush()
if not doc:
return None
ctx=doc.xpathNewContext()
ctx.xpathRegisterNs('n',doc.children.ns().content)
userids=[]
for placemark in ctx.xpathEval('/n:kml/n:Document/n:Placemark'):
ctx1=doc.xpathNewContext()
ctx1.setContextNode(placemark)
ctx1.xpathRegisterNs('n',doc.children.ns().content)
description=' '.join(map(str,ctx1.xpathEval('n:description/text()')))
ctx1.xpathFreeContext()
r=username_re.search(description)
if r:
userids.append(int(r.group(1)))
else:
userids.append(hash(str(placemark)))
ctx.xpathFreeContext()
doc.freeDoc()
return userids
def coords_to_idxs(lat,lon):
global slots_per_degree
return (int(math.floor((lat - (-90 )) * slots_per_degree)),
int(math.floor((lon - (-180)) * slots_per_degree)))
########################################################################
########################## outimage_writer #############################
########################################################################
outimages=[]
class outimage_writer:
def __init__(self,lat_range,lon_range,fname_prefix,palette):
global slots_per_degree,outimages
self.lat_range,self.lon_range=lat_range,lon_range
self.start_idxs=coords_to_idxs(self.lat_range[0],self.lon_range[0])
self.size=(
(self.lon_range[1]-self.lon_range[0]) * slots_per_degree,
(self.lat_range[1]-self.lat_range[0]) * slots_per_degree)
self.imagedata=[0] * (self.size[0]*self.size[1])
self.palette=palette
self.fname='%s_%d_%d_%d_%d.png' % (fname_prefix,
self.lat_range[0],
self.lon_range[0],
self.lat_range[1]-self.lat_range[0],
self.lon_range[1]-self.lon_range[0])
self.lock=threading.Lock()
outimages.append(self)
def latlon_to_outimage_coords(self,lat,lon):
global slots_per_degree
return (int(round((lon-self.lon_range[0]) * slots_per_degree)),
int(round((lat-self.lat_range[0]) * slots_per_degree)))
def putpixel(self,x,y,coloridx):
if x >= 0 and y >= 0 and x < self.size[0] and y <= self.size[1]:
with self.lock:
self.imagedata[x + (self.size[1]-1-y)*self.size[0]]=coloridx
def putrectangle(self,x0,x1,y0,y1,coloridx):
with self.lock:
for x in range(max(0,x0),min(self.size[0],x1)):
for y in range(max(0,self.size[1]-1-y1),min(self.size[1],self.size[1]-1-y0)):
self.imagedata[x + y*self.size[0]]=coloridx
def write_file(self):
f=open(self.fname,'wb')
png.Writer(size=self.size,palette=self.palette,compression=9). \
write_array(f,self.imagedata)
f.close()
########################################################################
######################### Population map ###############################
########################################################################
population_map_horizontal_sum=[]
population_map_vertical_sum=[]
def build_population_map_sums():
global population_map,slots_per_degree
global population_map_vertical_sum,population_map_horizontal_sum
population_map_vertical_sum[:]=[]
cur_sums=[0] * 360 * slots_per_degree
for lat in range(len(population_map)):
for lon in range(len(cur_sums)):
cur_sums[lon]+=population_map[lat][lon]
population_map_vertical_sum.append(tuple(cur_sums))
population_map_vertical_sum.append(tuple([0] * 360 * slots_per_degree))
population_map_horizontal_sum[:]=[[0]*len(population_map[0]) \
for lat in range(len(population_map))]
cur_sums=[0] * 180 * slots_per_degree
for lon in range(len(population_map[0])):
for lat in range(len(cur_sums)):
cur_sums[lat]+=population_map[lat][lon]
population_map_horizontal_sum[lat][lon]=cur_sums[lat]
for lat in range(len(cur_sums)):
population_map_horizontal_sum[lat].append(0)
def build_empty_map():
global slots_per_degree
m=[]
for lat in range(-90 * slots_per_degree,+90 * slots_per_degree):
m.append([0] * 360 * slots_per_degree)
return m
print 'Reading GeoNames file'
population_map=build_empty_map()
for line in open(geonames_cities_fname,'r'):
fields=line.split('\t')
lat,lon=map(float,fields[4:6])
population=float(fields[14])
lat,lon=coords_to_idxs(lat,lon)
population_map[lat][lon]+=int(population)
build_population_map_sums()
def calc_remoteness(lat,lon):
global slots_per_degree,population_map
global population_map_horizontal_sum,population_map_vertical_sum
max_distance_from_city=4 * slots_per_degree
best_distance_from_city=max_distance_from_city
distance=0
y_size=len(population_map[0])
while distance < best_distance_from_city+1*slots_per_degree:
if distance:
if False:
population=0
x=lat-distance
if x >= 0:
for y in range(lon-distance,lon+distance+1):
population+=population_map[x][y % y_size]
x=lat+distance
if x < 180 * slots_per_degree:
for y in range(lon-distance,lon+distance+1):
population+=population_map[x][y % y_size]
y1=(lon-distance) % y_size
y2=(lon+distance) % y_size
for x in range(max(0,lat-distance+1),
min(180 * slots_per_degree,lat+distance)):
population+=population_map[x][y1]+population_map[x][y2]
else:
y1=(lon-distance) % y_size
y2=(lon+distance) % y_size
x1=max(-1,lat-distance)
x2=min(180 * slots_per_degree-1,lat+distance-1)
population= (population_map_vertical_sum[x2][y2] - \
population_map_vertical_sum[x1][y2]) + \
(population_map_vertical_sum[x2][y1] - \
population_map_vertical_sum[x1][y1])
y1-=1
if y2 > y1:
y3,y4=0,0
else:
y3,y4=-1,y2
y2=y_size-1
x=lat-distance
if x >= 0:
population+=(population_map_horizontal_sum[x][y2] - \
population_map_horizontal_sum[x][y1]) + \
(population_map_horizontal_sum[x][y4] - \
population_map_horizontal_sum[x][y3])
x=lat+distance
if x < 180 * slots_per_degree:
population+=(population_map_horizontal_sum[x][y2] - \
population_map_horizontal_sum[x][y1]) + \
(population_map_horizontal_sum[x][y4] - \
population_map_horizontal_sum[x][y3])
else:
population=population_map[lat][lon]
if population:
distance_from_city=distance
if population >= 50e3:
distance_from_city-=slots_per_degree * \
math.sqrt(max(0,population - 50e3) / 60e6)
else:
distance_from_city+=slots_per_degree * 2000.0 / population
best_distance_from_city=min(best_distance_from_city,
distance_from_city)
distance+=1
if best_distance_from_city <= 0:
return 0
return min(1,best_distance_from_city / float(max_distance_from_city))
########################################################################
####################### toplevel_rectangle_processor ###################
########################################################################
class toplevel_rectangle_processor:
def __init__(self,lat,lon,touristiness_outimage):
global cachedir
self.lat=lat
self.lon=lon
self.touristiness_outimage=touristiness_outimage
self.cachefname=(cachedir + '/%d_%d.pickle' % (lat,lon)) \
if cachedir else None
self.cache=dict()
if self.cachefname:
try:
loaded_cache=cPickle.load(open(self.cachefname,'r'))
except (IOError,EOFError):
pass
else:
self.cache=loaded_cache
self.cache_modifications=0
def get_photo_userids(self,lat_range,lon_range):
global print_debug
photo_userids=self.cache.get((lat_range,lon_range))
if photo_userids is None:
photo_userids=fetch_nr_of_photos(lat_range,lon_range)
if photo_userids is not None:
self.cache[lat_range,lon_range]=photo_userids
self.cache_modifications+=1
self.check_write_cache(50)
elif print_debug:
sys.stdout.write('c')
sys.stdout.flush()
return photo_userids or tuple()
def check_write_cache(self,min_modifications=1):
if self.cache_modifications >= min_modifications and self.cachefname:
cPickle.dump(self.cache,open(self.cachefname,'w'),-1)
self.cache_modifications=0
@staticmethod
def write_output_rectangle(outimage,lat_range,lon_range,coloridx):
x0,y0=outimage.latlon_to_outimage_coords(lat_range[0],lon_range[0])
x1,y1=outimage.latlon_to_outimage_coords(lat_range[1],lon_range[1])
outimage.putrectangle(x0,x1,y0,y1,coloridx)
def process_rectangle(self,lat,lon,treelevel=0):
global touristy_spots,touristy_spots_lock
coord_step=0.5 ** treelevel
lat_range=(lat,lat+coord_step)
lon_range=(lon,lon+coord_step)
photo_userids=self.get_photo_userids(lat_range,lon_range)
if photo_userids and treelevel < maxtreelevel and \
(len(photo_userids) >= 25 or treelevel < mintreelevel):
nr_of_photos=[]
for lat_idx in (0,1):
for lon_idx in (0,1):
nr_of_photos.append(self.process_rectangle(
lat+lat_idx*coord_step*0.5,
lon+lon_idx*coord_step*0.5,treelevel+1))
nr_of_photos=sum(sorted(nr_of_photos,reverse=True)[:2]) * 2
else:
nr_of_userids=len(frozenset(photo_userids))
nr_of_photos=nr_of_userids + \
(len(photo_userids) - nr_of_userids) / 3.0
if not photo_userids and treelevel < mintreelevel:
self.write_output_rectangle(self.touristiness_outimage,
lat_range,lon_range,0)
elif treelevel == mintreelevel:
level=0
if nr_of_photos > 0:
area=math.cos(math.radians(lat+coord_step/2.0)) * \
((2**2) ** maxtreelevel) / ((2**2) ** treelevel)
touristiness=nr_of_photos / (30.0 * area)
with touristy_spots_lock:
touristy_spots.append([coords_to_idxs(lat,lon),
touristiness])
level=int(min(99,max(1,
99*(1+math.log(min(1,touristiness))/7))))
x,y=self.touristiness_outimage.latlon_to_outimage_coords(
lat_range[0],lon_range[0])
self.touristiness_outimage.putpixel(x,y,level)
return nr_of_photos
def process(self):
self.process_rectangle(self.lat,self.lon)
self.check_write_cache()
class toplevel_rectangle_processor_thread(threading.Thread,
toplevel_rectangle_processor):
def __init__(self,*args):
threading.Thread.__init__(self)
toplevel_rectangle_processor.__init__(self,*args)
def run(self):
self.process()
########################################################################
###################### Build dest regions list #########################
########################################################################
regions=[
#((-70,70),(-180,0)),
#((-60,+33),(-118,-33)),
#((-6,53),(72,115)),
]
lat_grid=(-90,+90,180)
lon_grid=(-180,+180,180)
for lat_start in range(*lat_grid):
for lon_start in range(*lon_grid):
regions.append(((lat_start,lat_start+lat_grid[2]),
(lon_start,lon_start+lon_grid[2])))
########################################################################
######################## Build touristiness map ########################
########################################################################
print 'Building touristiness map'
touristiness_color_gradient=[(0,0,0,160)]
for level100 in range(1,100):
level=level100/(100.0-1)
touristiness_color_gradient.append(tuple(map(int,(
min(255,level*2*255), # R
max(0, level*2-1)*255, # G
max(0, 1-level*2)*255, # B
160+(228-160)*level)))) # A
try:
for lat_range,lon_range in regions:
touristiness_outimage=outimage_writer(lat_range,lon_range,
touristiness_image_fname_prefix,
touristiness_color_gradient)
for lon in range(*lon_range):
for lat in range(*lat_range):
while threading.activeCount() > 50:
time.sleep(0.3)
if print_debug:
print lon,lat,
sys.stdout.flush()
processor_args=(lat,lon,touristiness_outimage)
if True:
thread=toplevel_rectangle_processor_thread(
*processor_args)
thread.start()
else:
toplevel_rectangle_processor(*processor_args).process()
if print_debug:
print
print 'Waiting for fetching threads to finish'
while threading.activeCount() > 1:
time.sleep(0.3)
while outimages:
outimages.pop().write_file()
except:
threads_stop_flag=True
raise
########################################################################
################## Build remote interesting places map #################
########################################################################
print 'Building remote interesting places map'
for idx in xrange(len(touristy_spots)):
(lat_idx,lon_idx),touristiness=touristy_spots[idx]
remoteness=calc_remoteness(lat_idx,lon_idx)
touristy_spots[idx].append(remoteness)
touristy_spots[idx].append(200e3 * (max(0,touristiness-0.20)**2) \
if remoteness > 0.1 else 0)
for idx in xrange(len(touristy_spots)):
(lat_idx,lon_idx),touristiness,remoteness,tourist_population= \
touristy_spots[idx]
population_map[lat_idx][lon_idx]+=tourist_population
build_population_map_sums()
interestingness_map=build_empty_map()
nontouristy_interestingness_map=build_empty_map()
filter_coeffs=[]
for lat_idx in range(len(interestingness_map)):
coeffs=[]
filter_radius=2
filter_radius_y=1 + ((filter_radius-1) / \
math.cos(math.radians((lat_idx + 0.5)/slots_per_degree - 90)))
for x in range(lat_idx-filter_radius+1,lat_idx+filter_radius):
if x < 0 or x >= len(interestingness_map):
continue
x_partvalue=((x-lat_idx)/float(filter_radius)) ** 2
for y_delta in range(-int(filter_radius_y),int(filter_radius_y)+1):
coeff=1 - math.sqrt(x_partvalue + \
(y_delta / float(filter_radius_y)) ** 2)
if coeff >= 0.03:
coeffs.append([x,y_delta,coeff])
coeffs_sum=sum(map(operator.itemgetter(2),coeffs))
for idx in range(len(coeffs)):
coeffs[idx][2]/=coeffs_sum
filter_coeffs.append(coeffs)
remote_interesting_palette=[]
for i in range(16):
for j in range(16):
remote_interesting_palette.append(( int(round(255*i/15)),
int(round(255*j/15)),
0,100+80*max(i,j)/16))
for lat_range,lon_range in regions:
outimage_writer(lat_range,lon_range,
remote_interesting_image_fname_prefix,
remote_interesting_palette)
for (lat_idx,lon_idx),touristiness,remoteness,tourist_population in \
touristy_spots:
if remoteness <= 0.075:
continue
remoteness_withtourists=calc_remoteness(lat_idx,lon_idx)
#level=int(max(0,min(99,remoteness_withtourists*200)))
#level=int(min(99,max(1,99*(1+math.log(min(1,touristiness))/7))))
#for image in outimages:
# image.putpixel( lon_idx-image.start_idxs[1],
# lat_idx-image.start_idxs[0],
# level)
#continue
nontouristy_interestingness=min(1,remoteness_withtourists*3) * \
(remoteness_withtourists/remoteness + \
2*min(1,-math.log(min(1,touristiness)) / 7)) / 3.0
norm_touristiness=1-0.8*min(1,nontouristy_interestingness*2)
interestingness=min(1,touristiness/0.005) * (1 + math.log(min(1,
min(1,touristiness/norm_touristiness) * \
(remoteness**3) * 1000)) / 7)
nontouristy_interestingness*=interestingness
for x,y_delta,filter_coeff in filter_coeffs[lat_idx]:
y=(lon_idx+y_delta) % len(interestingness_map[0])
interestingness_map[x][y]+=interestingness*filter_coeff
nontouristy_interestingness_map[x][y]+= \
nontouristy_interestingness*filter_coeff
for lat_idx in range(len(interestingness_map)):
for lon_idx,(interestingness,nontouristy_interestingness) in \
enumerate(zip( interestingness_map[lat_idx],
nontouristy_interestingness_map[lat_idx])):
if interestingness <= 1e-3:
continue
brightness=15*min(1,2*interestingness)
angle=min(1,max(0,nontouristy_interestingness / interestingness))
coloridx=16*int(round(min(1,2-2*angle) * brightness)) + \
int(round(min(1, 2*angle) * brightness))
for image in outimages:
image.putpixel( lon_idx-image.start_idxs[1],
lat_idx-image.start_idxs[0],
coloridx)
while outimages:
outimages.pop().write_file()