diff --git a/README.md b/README.md index c0fd401..703ac9d 100644 --- a/README.md +++ b/README.md @@ -21,8 +21,8 @@ The library focuses exclusively on cpu profiling. For heap profiling please cons ZIO Profiling requires you to add both the main library and optionally the compiler plugin to your build.sbt: ```scala -libraryDependencies += "dev.zio" %% "zio-profiling" % "0.3.0" -libraryDependencies += compilerPlugin("dev.zio" %% "zio-profiling-tagging-plugin" % "0.3.0") +libraryDependencies += "dev.zio" %% "zio-profiling" % "0.3.1" +libraryDependencies += compilerPlugin("dev.zio" %% "zio-profiling-tagging-plugin" % "0.3.1") ``` ## Profiling an application and displaying a flamegraph @@ -131,7 +131,7 @@ val testEffect = CostCenter.withChildCostCenter("foo.Foo.testEffect(Foo.scala:12 To enable the compiler plugin, add the following to the sbt module __containing the code you want to profile__. ```scala -compilerPlugin("dev.zio" %% "zio-profiling-tagging-plugin" % "0.3.0") +compilerPlugin("dev.zio" %% "zio-profiling-tagging-plugin" % "0.3.1") ``` @@ -139,7 +139,7 @@ compilerPlugin("dev.zio" %% "zio-profiling-tagging-plugin" % "0.3.0") ZIO Profiling offers an integration with the Java Microbenchmark Harness (JMH). In order to profile a jmh benchmark, first ensure that the sources are properly tagged using the tagging plugin. Next, add a dependency to the jmh module to your benchmarking module: ```scala -libraryDependencies += "dev.zio" %% "zio-profiling-jmh" % "0.3.0" +libraryDependencies += "dev.zio" %% "zio-profiling-jmh" % "0.3.1" ``` In your actual benchmarks, ensure that you are running ZIO effects using the methods in `zio.profiling.jmh.BenchmarkUtils`. A possible benchmark might look like this