forked from golang/crypto
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargon2.go
283 lines (257 loc) · 9.19 KB
/
argon2.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package argon2 implements the key derivation function Argon2.
// Argon2 was selected as the winner of the Password Hashing Competition and can
// be used to derive cryptographic keys from passwords.
//
// For a detailed specification of Argon2 see [1].
//
// If you aren't sure which function you need, use Argon2id (IDKey) and
// the parameter recommendations for your scenario.
//
// # Argon2i
//
// Argon2i (implemented by Key) is the side-channel resistant version of Argon2.
// It uses data-independent memory access, which is preferred for password
// hashing and password-based key derivation. Argon2i requires more passes over
// memory than Argon2id to protect from trade-off attacks. The recommended
// parameters (taken from [2]) for non-interactive operations are time=3 and to
// use the maximum available memory.
//
// # Argon2id
//
// Argon2id (implemented by IDKey) is a hybrid version of Argon2 combining
// Argon2i and Argon2d. It uses data-independent memory access for the first
// half of the first iteration over the memory and data-dependent memory access
// for the rest. Argon2id is side-channel resistant and provides better brute-
// force cost savings due to time-memory tradeoffs than Argon2i. The recommended
// parameters for non-interactive operations (taken from [2]) are time=1 and to
// use the maximum available memory.
//
// [1] https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf
// [2] https://tools.ietf.org/html/draft-irtf-cfrg-argon2-03#section-9.3
package argon2
import (
"encoding/binary"
"sync"
"golang.org/x/crypto/blake2b"
)
// The Argon2 version implemented by this package.
const Version = 0x13
const (
argon2d = iota
argon2i
argon2id
)
// Key derives a key from the password, salt, and cost parameters using Argon2i
// returning a byte slice of length keyLen that can be used as cryptographic
// key. The CPU cost and parallelism degree must be greater than zero.
//
// For example, you can get a derived key for e.g. AES-256 (which needs a
// 32-byte key) by doing:
//
// key := argon2.Key([]byte("some password"), salt, 3, 32*1024, 4, 32)
//
// The draft RFC recommends[2] time=3, and memory=32*1024 is a sensible number.
// If using that amount of memory (32 MB) is not possible in some contexts then
// the time parameter can be increased to compensate.
//
// The time parameter specifies the number of passes over the memory and the
// memory parameter specifies the size of the memory in KiB. For example
// memory=32*1024 sets the memory cost to ~32 MB. The number of threads can be
// adjusted to the number of available CPUs. The cost parameters should be
// increased as memory latency and CPU parallelism increases. Remember to get a
// good random salt.
func Key(password, salt []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
return deriveKey(argon2i, password, salt, nil, nil, time, memory, threads, keyLen)
}
// IDKey derives a key from the password, salt, and cost parameters using
// Argon2id returning a byte slice of length keyLen that can be used as
// cryptographic key. The CPU cost and parallelism degree must be greater than
// zero.
//
// For example, you can get a derived key for e.g. AES-256 (which needs a
// 32-byte key) by doing:
//
// key := argon2.IDKey([]byte("some password"), salt, 1, 64*1024, 4, 32)
//
// The draft RFC recommends[2] time=1, and memory=64*1024 is a sensible number.
// If using that amount of memory (64 MB) is not possible in some contexts then
// the time parameter can be increased to compensate.
//
// The time parameter specifies the number of passes over the memory and the
// memory parameter specifies the size of the memory in KiB. For example
// memory=64*1024 sets the memory cost to ~64 MB. The number of threads can be
// adjusted to the numbers of available CPUs. The cost parameters should be
// increased as memory latency and CPU parallelism increases. Remember to get a
// good random salt.
func IDKey(password, salt []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
return deriveKey(argon2id, password, salt, nil, nil, time, memory, threads, keyLen)
}
func deriveKey(mode int, password, salt, secret, data []byte, time, memory uint32, threads uint8, keyLen uint32) []byte {
if time < 1 {
panic("argon2: number of rounds too small")
}
if threads < 1 {
panic("argon2: parallelism degree too low")
}
h0 := initHash(password, salt, secret, data, time, memory, uint32(threads), keyLen, mode)
memory = memory / (syncPoints * uint32(threads)) * (syncPoints * uint32(threads))
if memory < 2*syncPoints*uint32(threads) {
memory = 2 * syncPoints * uint32(threads)
}
B := initBlocks(&h0, memory, uint32(threads))
processBlocks(B, time, memory, uint32(threads), mode)
return extractKey(B, memory, uint32(threads), keyLen)
}
const (
blockLength = 128
syncPoints = 4
)
type block [blockLength]uint64
func initHash(password, salt, key, data []byte, time, memory, threads, keyLen uint32, mode int) [blake2b.Size + 8]byte {
var (
h0 [blake2b.Size + 8]byte
params [24]byte
tmp [4]byte
)
b2, _ := blake2b.New512(nil)
binary.LittleEndian.PutUint32(params[0:4], threads)
binary.LittleEndian.PutUint32(params[4:8], keyLen)
binary.LittleEndian.PutUint32(params[8:12], memory)
binary.LittleEndian.PutUint32(params[12:16], time)
binary.LittleEndian.PutUint32(params[16:20], uint32(Version))
binary.LittleEndian.PutUint32(params[20:24], uint32(mode))
b2.Write(params[:])
binary.LittleEndian.PutUint32(tmp[:], uint32(len(password)))
b2.Write(tmp[:])
b2.Write(password)
binary.LittleEndian.PutUint32(tmp[:], uint32(len(salt)))
b2.Write(tmp[:])
b2.Write(salt)
binary.LittleEndian.PutUint32(tmp[:], uint32(len(key)))
b2.Write(tmp[:])
b2.Write(key)
binary.LittleEndian.PutUint32(tmp[:], uint32(len(data)))
b2.Write(tmp[:])
b2.Write(data)
b2.Sum(h0[:0])
return h0
}
func initBlocks(h0 *[blake2b.Size + 8]byte, memory, threads uint32) []block {
var block0 [1024]byte
B := make([]block, memory)
for lane := uint32(0); lane < threads; lane++ {
j := lane * (memory / threads)
binary.LittleEndian.PutUint32(h0[blake2b.Size+4:], lane)
binary.LittleEndian.PutUint32(h0[blake2b.Size:], 0)
blake2bHash(block0[:], h0[:])
for i := range B[j+0] {
B[j+0][i] = binary.LittleEndian.Uint64(block0[i*8:])
}
binary.LittleEndian.PutUint32(h0[blake2b.Size:], 1)
blake2bHash(block0[:], h0[:])
for i := range B[j+1] {
B[j+1][i] = binary.LittleEndian.Uint64(block0[i*8:])
}
}
return B
}
func processBlocks(B []block, time, memory, threads uint32, mode int) {
lanes := memory / threads
segments := lanes / syncPoints
processSegment := func(n, slice, lane uint32, wg *sync.WaitGroup) {
var addresses, in, zero block
if mode == argon2i || (mode == argon2id && n == 0 && slice < syncPoints/2) {
in[0] = uint64(n)
in[1] = uint64(lane)
in[2] = uint64(slice)
in[3] = uint64(memory)
in[4] = uint64(time)
in[5] = uint64(mode)
}
index := uint32(0)
if n == 0 && slice == 0 {
index = 2 // we have already generated the first two blocks
if mode == argon2i || mode == argon2id {
in[6]++
processBlock(&addresses, &in, &zero)
processBlock(&addresses, &addresses, &zero)
}
}
offset := lane*lanes + slice*segments + index
var random uint64
for index < segments {
prev := offset - 1
if index == 0 && slice == 0 {
prev += lanes // last block in lane
}
if mode == argon2i || (mode == argon2id && n == 0 && slice < syncPoints/2) {
if index%blockLength == 0 {
in[6]++
processBlock(&addresses, &in, &zero)
processBlock(&addresses, &addresses, &zero)
}
random = addresses[index%blockLength]
} else {
random = B[prev][0]
}
newOffset := indexAlpha(random, lanes, segments, threads, n, slice, lane, index)
processBlockXOR(&B[offset], &B[prev], &B[newOffset])
index, offset = index+1, offset+1
}
wg.Done()
}
for n := uint32(0); n < time; n++ {
for slice := uint32(0); slice < syncPoints; slice++ {
var wg sync.WaitGroup
for lane := uint32(0); lane < threads; lane++ {
wg.Add(1)
go processSegment(n, slice, lane, &wg)
}
wg.Wait()
}
}
}
func extractKey(B []block, memory, threads, keyLen uint32) []byte {
lanes := memory / threads
for lane := uint32(0); lane < threads-1; lane++ {
for i, v := range B[(lane*lanes)+lanes-1] {
B[memory-1][i] ^= v
}
}
var block [1024]byte
for i, v := range B[memory-1] {
binary.LittleEndian.PutUint64(block[i*8:], v)
}
key := make([]byte, keyLen)
blake2bHash(key, block[:])
return key
}
func indexAlpha(rand uint64, lanes, segments, threads, n, slice, lane, index uint32) uint32 {
refLane := uint32(rand>>32) % threads
if n == 0 && slice == 0 {
refLane = lane
}
m, s := 3*segments, ((slice+1)%syncPoints)*segments
if lane == refLane {
m += index
}
if n == 0 {
m, s = slice*segments, 0
if slice == 0 || lane == refLane {
m += index
}
}
if index == 0 || lane == refLane {
m--
}
return phi(rand, uint64(m), uint64(s), refLane, lanes)
}
func phi(rand, m, s uint64, lane, lanes uint32) uint32 {
p := rand & 0xFFFFFFFF
p = (p * p) >> 32
p = (p * m) >> 32
return lane*lanes + uint32((s+m-(p+1))%uint64(lanes))
}