forked from MaxiaoyuHehe/FRIQA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvifvec.m
135 lines (117 loc) · 5.49 KB
/
vifvec.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
function vif=vifvec(imorg,imdist);
% -----------COPYRIGHT NOTICE STARTS WITH THIS LINE------------
% Copyright (c) 2005 The University of Texas at Austin
% All rights reserved.
%
% Permission is hereby granted, without written agreement and without license or royalty fees, to use, copy,
% modify, and distribute this code (the source files) and its documentation for
% any purpose, provided that the copyright notice in its entirety appear in all copies of this code, and the
% original source of this code, Laboratory for Image and Video Engineering (LIVE, http://live.ece.utexas.edu)
% at the University of Texas at Austin (UT Austin,
% http://www.utexas.edu), is acknowledged in any publication that reports research using this code. The research
% is to be cited in the bibliography as:
%
% H. R. Sheikh and A. C. Bovik, "Image Information and Visual Quality", IEEE Transactions on
% Image Processing, (to appear).
%
% IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT AUSTIN BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
% OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS DATABASE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF TEXAS
% AT AUSTIN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%
% THE UNIVERSITY OF TEXAS AT AUSTIN SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
% WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE DATABASE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS,
% AND THE UNIVERSITY OF TEXAS AT AUSTIN HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
%
% -----------COPYRIGHT NOTICE ENDS WITH THIS LINE------------
%
%This is an implementation of the algorithm for calculating the
%Visual Information Fidelity (VIF) measure (may also be known as the Sheikh
%-Bovik Index) between two images. Please refer
%to the following paper:
%
%H. R. Sheikh and A. C. Bovik "Image Information and Visual Quality"
%IEEE Transactios on Image Processing, in publication, May 2005.
%Download manuscript draft from http://live.ece.utexas.edu in the
%Publications link
%
%This implementation is slightly differnet from the one used to report
%results in the paper above. The modification have to do with using more
%subands than those used in the paper, better handling of image boundaries,
%and a window that automatically resizes itself based on the scale.
%
%Report bugfixes and comments to [email protected]
%
%----------------------------------------------------------------------
% Prerequisites: The Steerable Pyramid toolbox. Available at
% http://www.cns.nyu.edu/~lcv/software.html
%
%Input : (1) img1: The reference image
% (2) img2: The distorted image (order is important)
%
%Output: (1) VIF te visual information fidelity measure between the two images
%Default Usage:
% Given 2 test images img1 and img2, whose dynamic range is 0-255
%
% vif = vifvec(img1, img2);
%
%Advanced Usage:
% Users may want to modify the parameters in the code.
% (1) Modify sigma_nsq to find tune for your image dataset.
% (2) MxM is the block size that denotes the size of a vector used in the
% GSM model.
% (3) subbands included in the computation
%========================================================================
M=3;
subbands=[4 7 10 13 16 19 22 25];
sigma_nsq=0.4;
% Do wavelet decomposition. This requires the Steerable Pyramid. You can
% use your own wavelet as long as the cell arrays org and dist contain
% corresponding subbands from the reference and the distorted images
% respectively.
[pyr,pind] = buildSpyr(imorg, 4, 'sp5Filters', 'reflect1'); % compute transform
org=ind2wtree(pyr,pind); % convert to cell array
[pyr,pind] = buildSpyr(imdist, 4, 'sp5Filters', 'reflect1');
dist=ind2wtree(pyr,pind);
% calculate the parameters of the distortion channel
[g_all,vv_all]=vifsub_est_m(org,dist,subbands,M);
% calculate the parameters of the reference image
[ssarr, larr, cuarr]=refparams_vecgsm(org,subbands,M);
% reorder subbands. This is needed since the outputs of the above functions
% are not in the same order
vvtemp=cell(1,max(subbands));
ggtemp=vvtemp;
for(kk=1:length(subbands))
vvtemp{subbands(kk)}=vv_all{kk};
ggtemp{subbands(kk)}=g_all{kk};
end
% compute reference and distorted image information from each subband
for i=1:length(subbands)
sub=subbands(i);
g=ggtemp{sub};
vv=vvtemp{sub};
ss=ssarr{sub};
lambda = larr(sub,:);,
cu=cuarr{sub};
% how many eigenvalues to sum over. default is all.
neigvals=length(lambda);
% compute the size of the window used in the distortion channel estimation, and use it to calculate the offset from subband borders
% we do this to avoid all coefficients that may suffer from boundary
% effects
lev=ceil((sub-1)/6);
winsize=2^lev+1; offset=(winsize-1)/2;
offset=ceil(offset/M);
% select only valid portion of the output.
g=g(offset+1:end-offset,offset+1:end-offset);
vv=vv(offset+1:end-offset,offset+1:end-offset);
ss=ss(offset+1:end-offset,offset+1:end-offset);
%VIF
temp1=0; temp2=0;
for j=1:length(lambda)
temp1=temp1+sum(sum((log2(1+g.*g.*ss.*lambda(j)./(vv+sigma_nsq))))); % distorted image information for the i'th subband
temp2=temp2+sum(sum((log2(1+ss.*lambda(j)./(sigma_nsq))))); % reference image information
end
num(i)=temp1;
den(i)=temp2;
end
% compuate VIF
vif=sum(num)./sum(den);