-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy patheval_2d3d_metric.py
executable file
·245 lines (200 loc) · 7.41 KB
/
eval_2d3d_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python3
"""Evaluate result
Usage:
eval_2d3d_metric.py [options] <npzdir> [<indices>...]
eval_2d3d_metric.py (-h | --help )
Options:
-h --help Show this screen.
--show Show the result on screen
--vpdir <vpdir> Directory to the vanishing points prediction
[Default: logs/pretrained-vanishing-points/npz/000096000]
"""
import os
import sys
import json
import math
import random
import os.path as osp
from collections import deque
import cv2
import yaml
import numpy as np
import matplotlib as mpl
import skimage.io
import numpy.linalg as LA
import skimage.draw
import matplotlib.cm as cm
import skimage.filters
import matplotlib.pyplot as plt
import skimage.morphology
from docopt import docopt
# from tqdm import tqdm
from wireframe.utils import parmap
from wireframe.metric import nms_junction
from wireframe.viewer import show_wireframe
from vectorize_u3d import extract_wireframe
from wireframe.optimize import (
to_world,
lifting_from_vp,
vanish_point_refine,
vanish_point_clustering,
vanish_point_clustering2,
estimate_intrinsic_from_vp,
)
def ap(tp, fp):
recall = tp
precision = tp / np.maximum(tp + fp, 1e-9)
recall = np.concatenate(([0.0], recall, [1.0]))
precision = np.concatenate(([0.0], precision, [0.0]))
for i in range(precision.size - 1, 0, -1):
precision[i - 1] = max(precision[i - 1], precision[i])
i = np.where(recall[1:] != recall[:-1])[0]
return np.sum((recall[i + 1] - recall[i]) * precision[i + 1])
def msTPFP_hit(pt_line, gt_line, pt_3dline, gt_3dline, threshold, theta_t=90):
diff = ((pt_line[:, None, :, None] - gt_line[:, None]) ** 2).sum(-1)
diff = np.minimum(
diff[:, :, 0, 0] + diff[:, :, 1, 1], diff[:, :, 0, 1] + diff[:, :, 1, 0]
)
choice = np.argmin(diff, 1)
dist = np.min(diff, 1)
# print("ptline", pt_line)
# print("gtline", gt_line)
if theta_t < 90:
ptv = pt_3dline[:, 0] - pt_3dline[:, 1] # (n, 3)
gtv = gt_3dline[:, 0] - gt_3dline[:, 1] # (m, 3)
ptv_n = np.linalg.norm(ptv, axis=1)
gtv_n = np.linalg.norm(gtv, axis=1)
# print(ptv)
# print(ptv_n)
norm_matrix = ptv_n[:, None] * gtv_n[None] # (n, m)
norm_maxtrx_0 = norm_matrix == 0
norm_maxtrx_non0 = ~norm_maxtrx_0
inner_ptgt = np.sum(ptv[:, None] * gtv[None], axis=-1)
cos = np.clip((inner_ptgt * norm_maxtrx_non0) / (norm_matrix + norm_maxtrx_0), 0, 1)
theta = np.arccos(cos) * 180 / math.pi
else:
theta = np.zeros_like(diff)
hit2 = np.zeros(len(gt_line), np.bool)
tp2 = np.zeros(len(pt_line), np.float)
fp2 = np.zeros(len(pt_line), np.float)
hit3 = np.zeros(len(gt_line), np.bool)
tp3 = np.zeros(len(pt_line), np.float)
fp3 = np.zeros(len(pt_line), np.float)
for i in range(len(pt_line)):
if dist[i] < threshold and theta[i, choice[i]] < theta_t and not hit3[choice[i]]:
hit3[choice[i]] = True
tp3[i] = 1
else:
fp3[i] = 1
if dist[i] < threshold and not hit2[choice[i]]:
hit2[choice[i]] = True
tp2[i] = 1
else:
fp2[i] = 1
return tp2, fp2, hit2, tp3, fp3, hit3
def extract(index, datadir, npzdir, vpdir):
batch = index // 100 + 1
image = skimage.io.imread(f"{datadir}/{batch:03}/{index % 100:04}.png")
result = np.load(f"{npzdir}/{index:06}.npz")
print(f"Extracting {npzdir}/{index:06}.npz")
with open(f"{datadir}/{batch:03}/{index % 100:04}_label.json") as f:
js = json.load(f)
gjunctions = js["junctions"]
gjuncdepth = js["juncdepth"]
gjunctypes = js["junctypes"]
glines = js["lines"]
gj512 = np.array(
[
256 * (1 + np.array(gjunctions)[:, 0]),
256 * (1 - np.array(gjunctions)[:, 1]),
]
).T
gt_lines = np.zeros((len(glines), 2, 2))
for k, (i, j) in enumerate(glines):
p1, p2 = gj512[i], gj512[j]
gt_lines[k, 0] = p1
gt_lines[k, 1] = p2
os.makedirs(f"{npzdir}/wireframe", exist_ok=True)
os.makedirs(f"{npzdir}/wireframe", exist_ok=True)
junctions, junctypes, juncdepth, lines, edges = extract_wireframe(
f"{npzdir}/wireframe/{index:06}",
image,
result,
plot=False,
imshow=False,
)
# gdepth = []
# for jun in junctions:
# best_distance = 1e10
# best_i = 0
# for i, gjun in enumerate(gjunctions):
# if LA.norm(jun - gjun) < best_distance:
# best_distance = LA.norm(jun - gjun)
# best_i = i
# gdepth.append(gjuncdepth[best_i])
# gdepth = np.array(gdepth)
# FIXME: retrain the neural network to use the same npz
vpfn = vpdir + f"/{index:06}.npz"
vps = np.load(vpfn)["vpts"]
# vps = vanish_point_clustering2(np.array(junctions), lines)
vps = vanish_point_refine(np.array(junctions), np.array(lines), vps)
# K = estimate_intrinsic_from_vp(vps[0][0], vps[1][0], vps[2][0])[0]
# print("K:", K)
# invK = LA.inv(K)
K = np.array([[2.1875, 0, 0], [0, 2.1875, 0], [0, 0, 1]])
invK = np.array([[0.45, 0, 0], [0, 0.45, 0], [0, 0, 1]])
vertices_gt, _ = to_world(np.array(gjunctions), np.array(gjuncdepth), glines, K)
gt_3dlines = vertices_gt[np.array(glines).reshape(-1)].reshape(-1, 2, 3)
if len(junctions) == 0:
return gt_lines, np.zeros((2, 2, 2)), np.zeros((2,)), gt_3dlines, np.zeros((2, 2, 3))
depth = lifting_from_vp(vps, invK, junctions, -juncdepth, junctypes, lines)
vertices_pt, _ = to_world(junctions, depth, lines, K)
pt_3dlines = vertices_pt[np.array(lines).reshape(-1)].reshape(-1, 2, 3)
pt_lines = np.zeros((len(lines), 2, 2))
scores = []
for k, e in enumerate(edges):
p1, p2, score = e[0], e[1], e[2]
pt_lines[k, 0] = p1[:2]
pt_lines[k, 1] = p2[:2]
scores.append(score)
scores = np.array(scores)
return gt_lines, pt_lines, scores, gt_3dlines, pt_3dlines
def main():
args = docopt(__doc__)
npzdir = args["<npzdir>"]
indices = args["<indices>"] or [i for i in range(0, 300)]
threshold_2d = 10
threshold_3d = 10
with open(f"{npzdir}/../../config.yaml", "r") as f:
c = yaml.load(f, Loader=yaml.FullLoader)
datadir = c["io"]["datadir"]
n_gt = 0
n_pt = 0
tps2, fps2, tps3, fps3, scores = [], [], [], [], []
for index in map(int, indices):
gt_lines, pt_lines, score, gt_3dlines, pt_3dlines = extract(index, datadir, npzdir, args["--vpdir"])
n_gt += len(gt_lines)
n_pt += len(pt_lines)
tp2, fp2, _, tp3, fp3, _ = msTPFP_hit(pt_lines/4, gt_lines/4, pt_3dlines, gt_3dlines, threshold=threshold_2d, theta_t=threshold_3d)
tps2.append(tp2)
fps2.append(fp2)
tps3.append(tp3)
fps3.append(fp3)
scores.append(score)
tps2 = np.concatenate(tps2)
fps2 = np.concatenate(fps2)
tps3 = np.concatenate(tps3)
fps3 = np.concatenate(fps3)
scores = np.concatenate(scores)
index = np.argsort(-scores)
tp_2d = np.cumsum(tps2[index]) / n_gt
fp_2d = np.cumsum(fps2[index]) / n_gt
tp_3d = np.cumsum(tps3[index]) / n_gt
fp_3d = np.cumsum(fps3[index]) / n_gt
sap_2d = ap(tp_2d, fp_2d)
sap_3d = ap(tp_3d, fp_3d)
print(f"2D metric sAP-{threshold_2d}: {sap_2d}.")
if __name__ == "__main__":
np.seterr(all="raise")
plt.rcParams["figure.figsize"] = (8, 8)
main()