-
Notifications
You must be signed in to change notification settings - Fork 8
/
plane.py
82 lines (70 loc) · 3.32 KB
/
plane.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import random
import cv2
import matplotlib.pyplot as plt
import numpy as np
import numpy.linalg as LA
# palette = sns.color_palette("tab20")
palette = [
(0.12156862745098039, 0.4666666666666667, 0.7058823529411765),
(0.6823529411764706, 0.7803921568627451, 0.9098039215686274),
(1.0, 0.4980392156862745, 0.054901960784313725),
(1.0, 0.7333333333333333, 0.47058823529411764),
(0.17254901960784313, 0.6274509803921569, 0.17254901960784313),
(0.596078431372549, 0.8745098039215686, 0.5411764705882353),
(0.8392156862745098, 0.15294117647058825, 0.1568627450980392),
(1.0, 0.596078431372549, 0.5882352941176471),
(0.5803921568627451, 0.403921568627451, 0.7411764705882353),
(0.7725490196078432, 0.6901960784313725, 0.8352941176470589),
(0.5490196078431373, 0.33725490196078434, 0.29411764705882354),
(0.7686274509803922, 0.611764705882353, 0.5803921568627451),
(0.8901960784313725, 0.4666666666666667, 0.7607843137254902),
(0.9686274509803922, 0.7137254901960784, 0.8235294117647058),
(0.4980392156862745, 0.4980392156862745, 0.4980392156862745),
(0.7803921568627451, 0.7803921568627451, 0.7803921568627451),
(0.7372549019607844, 0.7411764705882353, 0.13333333333333333),
(0.8588235294117647, 0.8588235294117647, 0.5529411764705883),
(0.09019607843137255, 0.7450980392156863, 0.8117647058823529),
(0.6196078431372549, 0.8549019607843137, 0.8980392156862745),
]
def main():
prefix = "sample-data/GWUmH4qmANxNTVk_f-_Wrw_HD_060_20"
I = cv2.imread(f"{prefix}_imag.png")[:, :, ::-1] / 255.0
buf_plane = cv2.imread(f"{prefix}_plan.png", -1)
with np.load(f"{prefix}_plan.npz") as f:
plane_normal = f["ws"]
# load ground truth dense map
with np.load(f"{prefix}_nrml.npz") as f:
buf_nrml_gt = f["normal"]
with np.load(f"{prefix}_dpth.npz") as f:
buf_dpth_gt = f["depth"][..., 0]
# draw a nice overlay
for i in range(len(plane_normal)):
alpha_fill = (buf_plane == i + 1)[..., None].astype(np.float32)
sx = cv2.Sobel(alpha_fill, cv2.CV_32F, 1, 0, ksize=5)
sy = cv2.Sobel(alpha_fill, cv2.CV_32F, 0, 1, ksize=5)
alpha_edge = (sx ** 2 + sy ** 2) ** 0.5
alpha_edge /= max(0.001, np.max(alpha_edge))
alpha_edge = alpha_edge[..., None]
alpha_fill *= 0.5
color = palette[random.randrange(len(palette))]
I = I * (1 - alpha_fill) + alpha_fill * color
I = I * (1 - alpha_edge) + alpha_edge * color
plt.figure(), plt.title("overlay"), plt.imshow(I)
plt.figure(), plt.title("nrml_gt"), plt.imshow(buf_nrml_gt / 2 + 0.5)
plt.figure(), plt.title("dpth_gt"), plt.imshow(buf_dpth_gt)
# Camera coordinate is with OpenGL convention
buf_nrml_p = np.zeros((512, 512, 3,))
buf_dpth_p = np.zeros((512, 512), dtype=float)
x, y = np.meshgrid(np.linspace(-1, 1, 512), np.linspace(1, -1, 512))
xyz = np.stack([x, y, -np.ones_like(x)], axis=2)
for p, w in enumerate(plane_normal):
ps = buf_plane == p + 1
buf_nrml_p[ps] = -w / LA.norm(w)
buf_dpth_p[ps] = 1 / (xyz[ps] @ w)
buf_dpth_p[buf_dpth_p < 0] = 0
buf_dpth_p[buf_dpth_p > 1000] = 1000
plt.figure(), plt.title("nrml_from_plane"), plt.imshow(buf_nrml_p / 2 + 0.5)
plt.figure(), plt.title("dpth_from_plane"), plt.imshow(buf_dpth_p)
plt.show()
if __name__ == "__main__":
main()