forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssdlite_mobilenetv2_scratch_600e_coco.py
150 lines (143 loc) · 4.83 KB
/
ssdlite_mobilenetv2_scratch_600e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
_base_ = [
'../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py'
]
model = dict(
type='SingleStageDetector',
backbone=dict(
type='MobileNetV2',
out_indices=(4, 7),
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03),
init_cfg=dict(type='TruncNormal', layer='Conv2d', std=0.03)),
neck=dict(
type='SSDNeck',
in_channels=(96, 1280),
out_channels=(96, 1280, 512, 256, 256, 128),
level_strides=(2, 2, 2, 2),
level_paddings=(1, 1, 1, 1),
l2_norm_scale=None,
use_depthwise=True,
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03),
act_cfg=dict(type='ReLU6'),
init_cfg=dict(type='TruncNormal', layer='Conv2d', std=0.03)),
bbox_head=dict(
type='SSDHead',
in_channels=(96, 1280, 512, 256, 256, 128),
num_classes=80,
use_depthwise=True,
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03),
act_cfg=dict(type='ReLU6'),
init_cfg=dict(type='Normal', layer='Conv2d', std=0.001),
# set anchor size manually instead of using the predefined
# SSD300 setting.
anchor_generator=dict(
type='SSDAnchorGenerator',
scale_major=False,
strides=[16, 32, 64, 107, 160, 320],
ratios=[[2, 3], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3]],
min_sizes=[48, 100, 150, 202, 253, 304],
max_sizes=[100, 150, 202, 253, 304, 320]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[0.1, 0.1, 0.2, 0.2])),
# model training and testing settings
train_cfg=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.,
ignore_iof_thr=-1,
gt_max_assign_all=False),
smoothl1_beta=1.,
allowed_border=-1,
pos_weight=-1,
neg_pos_ratio=3,
debug=False),
test_cfg=dict(
nms_pre=1000,
nms=dict(type='nms', iou_threshold=0.45),
min_bbox_size=0,
score_thr=0.02,
max_per_img=200))
cudnn_benchmark = True
# dataset settings
dataset_type = 'CocoDataset'
data_root = '/home/zhijie/datasets/coco2017/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Expand',
mean=img_norm_cfg['mean'],
to_rgb=img_norm_cfg['to_rgb'],
ratio_range=(1, 4)),
dict(
type='MinIoURandomCrop',
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
min_crop_size=0.3),
dict(type='Resize', img_scale=(320, 320), keep_ratio=False),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='PhotoMetricDistortion',
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=320),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(320, 320),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=False),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=320),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=24,
workers_per_gpu=4,
train=dict(
_delete_=True,
type='RepeatDataset', # use RepeatDataset to speed up training
times=5,
dataset=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline)),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.015, momentum=0.9, weight_decay=4.0e-5)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='CosineAnnealing',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
min_lr=0)
runner = dict(type='EpochBasedRunner', max_epochs=120)
# Avoid evaluation and saving weights too frequently
evaluation = dict(interval=5, metric='bbox')
checkpoint_config = dict(interval=5)
custom_hooks = [
dict(type='NumClassCheckHook'),
dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW')
]
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (24 samples per GPU)
auto_scale_lr = dict(base_batch_size=192)