-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfusion_l1norm.py
41 lines (28 loc) · 1002 Bytes
/
fusion_l1norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import tensorflow.compat.v1 as tf
import numpy as np
def L1_norm(source_en_a, source_en_b):
result = []
narry_a = source_en_a
narry_b = source_en_b
dimension = source_en_a.shape
# caculate L1-norm
temp_abs_a = tf.abs(narry_a)
temp_abs_b = tf.abs(narry_b)
_l1_a = tf.reduce_sum(temp_abs_a,3)
_l1_b = tf.reduce_sum(temp_abs_b,3)
_l1_a = tf.reduce_sum(_l1_a, 0)
_l1_b = tf.reduce_sum(_l1_b, 0)
l1_a = _l1_a.eval()
l1_b = _l1_b.eval()
# caculate the map for source images
mask_value = l1_a + l1_b
mask_sign_a = l1_a/mask_value
mask_sign_b = l1_b/mask_value
array_MASK_a = mask_sign_a
array_MASK_b = mask_sign_b
for i in range(dimension[3]):
temp_matrix = array_MASK_a*narry_a[0,:,:,i] + array_MASK_b*narry_b[0,:,:,i]
result.append(temp_matrix)
result = np.stack(result, axis=-1)
resule_tf = np.reshape(result, (dimension[0], dimension[1], dimension[2], dimension[3]))
return resule_tf