-
Notifications
You must be signed in to change notification settings - Fork 11
/
lora_finetune.py
executable file
·162 lines (135 loc) · 5.13 KB
/
lora_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import os
import sys
from typing import List
import torch
import transformers
from peft import (
TaskType,
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
)
from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig
from utils import *
from collator import Collator
def train(args):
set_seed(args.seed)
ensure_dir(args.output_dir)
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
local_rank = int(os.environ.get("LOCAL_RANK") or 0)
if local_rank == 0:
print(vars(args))
if ddp:
device_map = {"": local_rank}
config = LlamaConfig.from_pretrained(args.base_model)
tokenizer = LlamaTokenizer.from_pretrained(
args.base_model,
model_max_length=args.model_max_length,
padding_side="right",
)
tokenizer.pad_token_id = 0
train_data, valid_data = load_datasets(args)
add_num = tokenizer.add_tokens(train_data.datasets[0].get_new_tokens())
config.vocab_size = len(tokenizer)
if local_rank == 0:
print("add {} new token.".format(add_num))
print("data num:", len(train_data))
tokenizer.save_pretrained(args.output_dir)
config.save_pretrained(args.output_dir)
collator = Collator(args, tokenizer)
model = LlamaForCausalLM.from_pretrained(
args.base_model,
# torch_dtype=torch.float16,
device_map=device_map,
)
model.resize_token_embeddings(len(tokenizer))
config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
target_modules=args.lora_target_modules.split(","),
modules_to_save=args.lora_modules_to_save.split(","),
lora_dropout=args.lora_dropout,
bias="none",
inference_mode=False,
task_type=TaskType.CAUSAL_LM,
)
model = get_peft_model(model, config)
if args.resume_from_checkpoint:
checkpoint_name = os.path.join(
args.resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
args.resume_from_checkpoint = False # So the trainer won't try loading its state
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
if local_rank == 0:
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
model = set_peft_model_state_dict(model, adapters_weights)
else:
if local_rank == 0:
print(f"Checkpoint {checkpoint_name} not found")
for n, p in model.named_parameters():
if "original_module" in n and any(module_name in n for module_name in config.modules_to_save):
p.requires_grad = False
if local_rank == 0:
model.print_trainable_parameters()
if not ddp and torch.cuda.device_count() > 1:
model.is_parallelizable = True
model.model_parallel = True
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=valid_data,
args=transformers.TrainingArguments(
seed=args.seed,
per_device_train_batch_size=args.per_device_batch_size,
per_device_eval_batch_size=args.per_device_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
warmup_ratio=args.warmup_ratio,
num_train_epochs=args.epochs,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
lr_scheduler_type=args.lr_scheduler_type,
fp16=args.fp16,
bf16=args.bf16,
logging_steps=args.logging_step,
optim=args.optim,
gradient_checkpointing=True,
evaluation_strategy=args.save_and_eval_strategy,
save_strategy=args.save_and_eval_strategy,
eval_steps=args.save_and_eval_steps,
save_steps=args.save_and_eval_steps,
output_dir=args.output_dir,
save_total_limit=5,
load_best_model_at_end=True,
deepspeed=args.deepspeed,
ddp_find_unused_parameters=False if ddp else None,
report_to=None,
eval_delay=1 if args.save_and_eval_strategy=="epoch" else 2000,
),
tokenizer=tokenizer,
data_collator=collator,
)
model.config.use_cache = False
# old_state_dict = model.state_dict
# model.state_dict = (
# lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
# ).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train(
resume_from_checkpoint=args.resume_from_checkpoint,
)
trainer.save_state()
trainer.save_model(output_dir=args.output_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='LLMRec')
parser = parse_global_args(parser)
parser = parse_train_args(parser)
parser = parse_dataset_args(parser)
args = parser.parse_args()
train(args)