-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain_model.py
105 lines (91 loc) · 3.35 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os, sys
import time
from config import config
from jobman import DD, expand
import utils
import model_attention
def set_config(conf, args, add_new_key=False):
# add_new_key: if conf does not contain the key, creates it
for key in args:
if key != 'jobman':
v = args[key]
if isinstance(v, DD):
set_config(conf[key], v)
else:
if conf.has_key(key):
conf[key] = convert_from_string(v)
elif add_new_key:
# create a new key in conf
conf[key] = convert_from_string(v)
else:
raise KeyError(key)
def convert_from_string(x):
"""
Convert a string that may represent a Python item to its proper data type.
It consists in running `eval` on x, and if an error occurs, returning the
string itself.
"""
try:
return eval(x, {}, {})
except Exception:
return x
def train_from_scratch(config, state, channel):
# Model options
save_model_dir = config[config.model].save_model_dir
if save_model_dir == 'current':
config[config.model].save_model_dir = './'
save_model_dir = './'
# to facilitate the use of cluster for multiple jobs
save_path = './model_config.pkl'
else:
# run locally, save locally
save_path = save_model_dir + 'model_config.pkl'
print 'current save dir ',save_model_dir
utils.create_dir_if_not_exist(save_model_dir)
reload_ = config[config.model].reload_
if reload_:
print 'preparing reload'
save_dir_backup = config[config.model].save_model_dir
from_dir_backup = config[config.model].from_dir
# never start retrain in the same folder
assert save_dir_backup != from_dir_backup
print 'save dir ',save_dir_backup
print 'from_dir ',from_dir_backup
print 'setting current model config with the old one'
model_config_old = utils.load_pkl(from_dir_backup + '/model_config.pkl')
set_config(config, model_config_old)
config[config.model].save_model_dir = save_dir_backup
config[config.model].from_dir = from_dir_backup
config[config.model].reload_ = True
if config.erase_history:
print 'erasing everything in ',save_model_dir
os.system('rm %s/*'%save_model_dir)
# for stdout file logging
#sys.stdout = Unbuffered(sys.stdout, state.save_model_path + 'stdout.log')
print 'saving model config into %s'%save_path
utils.dump_pkl(config, save_path)
# Also copy back from config into state.
for key in config:
setattr(state, key, config[key])
model_type = config.model
print 'Model Type: %s'%model_type
print 'Dataset: %s'%config[config.model].dataset
print 'Command: %s' % ' '.join(sys.argv)
if config.model == 'attention':
model_attention.train_from_scratch(state, channel)
else:
raise NotImplementedError()
def main(state, channel=None):
set_config(config, state)
train_from_scratch(config, state, channel)
if __name__ == '__main__':
args = {}
try:
for arg in sys.argv[1:]:
k, v = arg.split('=')
args[k] = v
except:
print 'args must be like a=X b.c=X'
exit(1)
state = expand(args)
sys.exit(main(state))