-
Notifications
You must be signed in to change notification settings - Fork 2
/
planar_beam.cpp
336 lines (331 loc) · 11.3 KB
/
planar_beam.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#include "post_processing.h"
#include "beam_parameter.h"
/** namespace planar_beam contains code to solve a planar stress problem.
*/
namespace planar_beam{
template <int dim>
/** implementing 2D FEM computation of a beam structure
* plane stress assumption, two dimensional entity element is used.
*/
class Beam
{
typedef post_processing::ComputeStressField<dim,Beam<dim>> BeamPostProcessing;
friend class BeamPostProcessing;
public:
Beam();
void run();
private:
static const double YoungModulus;
static const double PoissonRatio;
static const double shearModulus;
static const double LamesFirstParameter;//!< for plane stress case, the formula is \f$ \frac{E\mu}{1-\mu^2};\f$
double neumann_coefficient;
void get_neumann_value(const Point<dim> &p, Vector<double> &values)const;
void make_grid();
void read_grid(char* fileName);
void write_grid(char* fileName);
void setup_system();
void setup_system_from_saved_solution();
void storeGradientToMap();
void assemble_system();
void test_boundary();
void solve();
void output_results(char* fileName) const;
Triangulation<dim> triangulation;
FESystem<dim> fe;
ConstraintMatrix constraints;
DoFHandler<dim> dof_handler;
SparsityPattern sparsity_pattern;
SparseMatrix<double> system_matrix;
Vector<double> solution;
Vector<double> system_rhs;
};
template <int dim>
const double Beam<dim>::YoungModulus = 1.0;
template <int dim>
const double Beam<dim>::PoissonRatio = 0.1;
template <int dim>
const double Beam<dim>::shearModulus = YoungModulus / (2 * (1 + PoissonRatio));
template <int dim>
const double Beam<dim>::LamesFirstParameter = YoungModulus*PoissonRatio / ((1 + PoissonRatio)*(1 -PoissonRatio));
template <int dim>
Beam<dim>::Beam() :
fe(FE_Q<dim>(1), dim),
dof_handler(triangulation)
{
neumann_coefficient = beam::force_couple_moment * 2 / pow(beam::height_of_beam,3.0);
}
template <int dim>
void Beam<dim>::test_boundary() {
typename DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active(),
endc = dof_handler.end();
for (; cell != endc; ++cell) {
for (unsigned int face_number = 0; face_number<GeometryInfo<dim>::faces_per_cell; ++face_number)
if (cell->face(face_number)->at_boundary()
&&
(cell->face(face_number)->boundary_id() == 1)) {
std::cout << "one face has boundary id =1\n";
}
}
}
template <int dim>
void Beam<dim>::storeGradientToMap() {
const unsigned int dofs_per_cell = fe.dofs_per_cell;
std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active();
DoFHandler<dim>::active_cell_iterator endc = dof_handler.end();
QGaussLobatto<dim> quadrature_formula(2);//2^dim quadrature points
FEValues<dim> fe_values(fe, quadrature_formula, update_gradients);
int cell_index = 0;
for (; cell != endc; ++cell) {
cell_index += 1;
fe_values.reinit(cell);
cell->get_dof_indices(local_dof_indices);
for (int i = 0; i < GeometryInfo<dim>::vertices_per_cell; i++) {
Tensor<2, dim> myGradient;
for (int j = 0; j < dofs_per_cell; j++) {
const unsigned int
component_j = fe.system_to_component_index(j).first;
myGradient[component_j] += solution[local_dof_indices[j]] * fe_values.shape_grad(j, i);
}
for (int k = 0; k<dim; k++) {
if (post_processing::my_gradient_map<dim>.find(local_dof_indices[dim*i + k]) == post_processing::my_gradient_map<dim>.end()) {//not found
post_processing::my_gradient_map<dim>[local_dof_indices[dim*i + k]] = myGradient[k];
post_processing::my_gradient_sum[local_dof_indices[dim*i + k]] = 1;
}
else {
post_processing::my_gradient_map<dim>[local_dof_indices[dim*i + k]] += myGradient[k];
post_processing::my_gradient_sum[local_dof_indices[dim*i + k]]++;
}
}
}
}
std::cout << "cellIndex:" << cell_index << '\n';
std::cout << "vertices per cell:" << GeometryInfo<dim>::vertices_per_cell << '\n';
}
template <int dim>
void Beam<dim>::get_neumann_value(const Point<dim> &p, Vector<double> &values) const {//vector valued function
std::cout << p[1] << '\n';
values[1] = 0;
if (p[0]<0) {// sigma_x=6*a*y
values[0] = -6 * neumann_coefficient*p[1];
}
else {
values[0] = 6 * neumann_coefficient*p[1];
}
}
template <int dim>
void Beam<dim>::read_grid(char* fileName) {
GridIn<dim> grid_in;
grid_in.attach_triangulation(triangulation);
std::ifstream input_file(fileName);
grid_in.read_msh(input_file);
//triangulation.refine_global(2);
std::cout << "Number of active cells: "
<< triangulation.n_active_cells()
<< std::endl;
}
template <int dim>
void Beam<dim>::write_grid(char* fileName) {
std::ofstream out(fileName);
GridOut grid_out;
grid_out.write_vtk(triangulation, out);
std::cout << "Grid written to grid-" << fileName << std::endl;
}
template <int dim>
void Beam<dim>::run()
{
read_grid("beam_triangulation.msh");
//test_boundary();
//no need to refine the mesh
setup_system();
assemble_system();
std::cout << "assemble system finished...\n";
solve();
std::cout << "solve finished...\n";
//setup_system_from_saved_solution();
storeGradientToMap();
output_results("solution_Beam.vtk");
}
template <int dim>
void Beam<dim>::make_grid()
{
GridGenerator::hyper_shell(triangulation, Point<dim>(), inner_radius, outer_radius);
static const SphericalManifold<dim> boundary;
triangulation.set_all_manifold_ids_on_boundary(0);
triangulation.set_manifold(0, boundary);
triangulation.refine_global(2);
std::cout << "Number of active cells: "
<< triangulation.n_active_cells()
<< std::endl;
}template <int dim>
void Beam<dim>::setup_system_from_saved_solution() {
dof_handler.distribute_dofs(fe);
std::cout << "Number of degrees of freedom: "
<< dof_handler.n_dofs()
<< std::endl;
std::ifstream file{ "solution_archive.txt" };
boost::archive::text_iarchive ia(file);
solution.load(ia, 1);
}
template <int dim>
void Beam<dim>::setup_system()
{
dof_handler.distribute_dofs(fe);
std::cout << "Number of degrees of freedom: "
<< dof_handler.n_dofs()
<< std::endl;
DynamicSparsityPattern dsp(dof_handler.n_dofs());
DoFTools::make_sparsity_pattern(dof_handler, dsp);
sparsity_pattern.copy_from(dsp);
system_matrix.reinit(sparsity_pattern);
solution.reinit(dof_handler.n_dofs());
system_rhs.reinit(dof_handler.n_dofs());
}
template <int dim>
void Beam<dim>::assemble_system()
{
constraints.clear();
QGauss<dim> quadrature_formula(2);
QGauss<dim - 1> face_quadrature_formula(2);
const post_processing::RightHandSide<dim> right_hand_side;
FEValues<dim> fe_values(fe, quadrature_formula,
update_values | update_gradients | update_JxW_values | update_quadrature_points);
FEFaceValues<dim> fe_face_values(fe, face_quadrature_formula,
update_values | update_quadrature_points |
update_normal_vectors | update_JxW_values);
const unsigned int dofs_per_cell = fe.dofs_per_cell;
const unsigned int n_q_points = quadrature_formula.size();
const unsigned int n_face_q_points = face_quadrature_formula.size();
FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
Vector<double> cell_rhs(dofs_per_cell);
std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active();
DoFHandler<dim>::active_cell_iterator endc = dof_handler.end();
std::vector<Vector<double>> rhs_values(n_q_points);
for (; cell != endc; ++cell)
{
cell_matrix = 0;
cell_rhs = 0;
fe_values.reinit(cell);
right_hand_side.vector_value_list(fe_values.get_quadrature_points(), rhs_values);
//assemble local matrix per cell
for (unsigned int i = 0; i<dofs_per_cell; ++i)
{
const unsigned int
component_i = fe.system_to_component_index(i).first;
for (unsigned int j = 0; j<dofs_per_cell; ++j)
{
const unsigned int
component_j = fe.system_to_component_index(j).first;
for (unsigned int q_point = 0; q_point<n_q_points;
++q_point)
{
cell_matrix(i, j)
+=
(
(fe_values.shape_grad(i, q_point)[component_i] *
fe_values.shape_grad(j, q_point)[component_j] *
LamesFirstParameter)
+
(fe_values.shape_grad(i, q_point)[component_j] *
fe_values.shape_grad(j, q_point)[component_i] *
shearModulus)
+
((component_i == component_j) ?
(fe_values.shape_grad(i, q_point) *
fe_values.shape_grad(j, q_point) *
shearModulus) :
0)
)
*
fe_values.JxW(q_point);
}
}
}
//assemble RHS per cell
for (unsigned int i = 0; i<dofs_per_cell; ++i)
{
const unsigned int
component_i = fe.system_to_component_index(i).first;
for (unsigned int q_point = 0; q_point<n_q_points; ++q_point)
cell_rhs(i) += fe_values.shape_value(i, q_point) *
rhs_values[q_point][component_i] *
fe_values.JxW(q_point);
}
Vector<double> neumann_value(dim);
//assemble neumann bc per cell
for (unsigned int face_number = 0; face_number < GeometryInfo<dim>::faces_per_cell; ++face_number)
if (cell->face(face_number)->at_boundary() &&cell->face(face_number)->boundary_id()==1)
{
fe_face_values.reinit(cell, face_number);
for (unsigned int q_point = 0; q_point<n_face_q_points; ++q_point)
{
get_neumann_value(fe_face_values.quadrature_point(q_point), neumann_value);
for (unsigned int i = 0; i < dofs_per_cell; ++i) {
const unsigned int
component_face_i = fe.system_to_component_index(i).first;
cell_rhs(i) += (neumann_value[component_face_i] *
fe_face_values.shape_value(i, q_point) *
fe_face_values.JxW(q_point));
}
}
}
cell->get_dof_indices(local_dof_indices);
//assemble dirichlet bc per cell
for(int vertex_number=0;vertex_number<GeometryInfo<dim>::vertices_per_cell; vertex_number++){
Point<dim> one_vertex = cell->vertex(vertex_number);
if (abs(one_vertex[0] - beam::length_of_beam / 2) < 1e-5 && abs(one_vertex[1]) < 1e-5) {
constraints.add_line(local_dof_indices[dim*vertex_number+1]);
}
else if (abs(one_vertex[0] + beam::length_of_beam / 2) < 1e-5 && abs(one_vertex[1]) < 1e-5) {
constraints.add_line(local_dof_indices[dim*vertex_number]);
constraints.add_line(local_dof_indices[dim*vertex_number + 1]);
}
}
for (unsigned int i = 0; i<dofs_per_cell; ++i)
{
for (unsigned int j = 0; j<dofs_per_cell; ++j)
system_matrix.add(local_dof_indices[i],
local_dof_indices[j],
cell_matrix(i, j));
system_rhs(local_dof_indices[i]) += cell_rhs(i);
}
}
constraints.close();//the first vertex is fixed
std::cout << "Constraint Matrix: ";
constraints.print(std::cout);
constraints.condense(system_matrix, system_rhs);
}
template <int dim>
void Beam<dim>::solve()
{
//non symetric matrix
SolverControl solver_control(4000, 1e-5);
SolverGMRES<> solver(solver_control);
solver.solve(system_matrix, solution, system_rhs,
PreconditionIdentity());
constraints.distribute(solution);
std::ofstream file{ "solution_archive.txt" };
boost::archive::text_oarchive oa(file);
solution.save(oa, 1);
}
template <int dim>
void Beam<dim>::output_results(char* fileName) const//post processing
{
DataOut<dim> data_out;
data_out.attach_dof_handler(dof_handler);
BeamPostProcessing my_stress_field;
data_out.add_data_vector(solution, my_stress_field);
data_out.build_patches();
std::ofstream output(fileName);
data_out.write_vtk(output);
}
}
int main(int argc)
{
planar_beam::Beam<2> my_planar_beam;
my_planar_beam.run();
return 0;
}