forked from saikatdutta/Stacked_DMSHN_bokeh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstacked_DMSHN_test.py
112 lines (70 loc) · 2.88 KB
/
stacked_DMSHN_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from __future__ import absolute_import, division, print_function
import cv2
import os
import sys
import glob
import argparse
import numpy as np
import PIL.Image as pil
import matplotlib as mpl
import matplotlib.cm as cm
import torch
from torchvision import transforms, datasets
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision.utils import save_image
from skimage.measure import compare_psnr,compare_ssim
from tqdm import tqdm
import math
import numbers
import sys
import matplotlib.pyplot as plt
from stacked_DMSHN import stacked_DMSHN
device = torch.device("cuda:0")
feed_width = 1536
feed_height = 1024
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
bokehnet = stacked_DMSHN().to(device)
bokehnet = nn.DataParallel(bokehnet)
# bokehnet.load_state_dict(torch.load('stacked/dmshn-4-0.pth',map_location=device))
bokehnet.load_state_dict(torch.load('../vanilla_models/stacked2/dmshn-12-0.pth',map_location=device))
# bokehnet.load_state_dict(torch.load('vanilla3/dmshn-19-0.pth',map_location=device))
# bokehnet.load_state_dict(torch.load('vanilla2_asl/dmshn-19-0.pth',map_location=device))
import time
total_time=0
# os.makedirs('outputs/stacked2_val294/',exist_ok= True)
# os.makedirs('outputs/stacked2_val/',exist_ok= True)
os.makedirs('outputs/stacked_DMSHN/',exist_ok= True)
# org_dir = '../PyNET-Bokeh/test_ut/'
# listfiles = os.listdir(org_dir)
# os.makedirs('analysis',exist_ok=True)
with torch.no_grad():
for i in tqdm(range(4400,4694)):
#for i in tqdm(range(0,200)):
# for file in listfiles :
# image_path = '/media/data2/saikat/bokeh_data/ValidationBokehFree/' + str(i) + '.png'
image_path = '/media/data2/saikat/bokeh_data/Training/original/' + str(i) + '.jpg'
#image_path = '/media/data2/saikat/bokeh_data/TestBokehFree/' + str(i) + '.png'
# image_path = org_dir + file
# Load image and preprocess
input_image = pil.open(image_path).convert('RGB')
original_width, original_height = input_image.size
org_image = input_image
org_image = transforms.ToTensor()(org_image).unsqueeze(0)
input_image = input_image.resize((feed_width, feed_height), pil.LANCZOS)
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
# PREDICTION
org_image = org_image.to(device)
input_image = input_image.to(device)
start_time = time.time()
bok_pred = bokehnet(input_image)
# print (bok_pred.shape)
total_time += time.time() - start_time
bok_pred = F.interpolate(bok_pred,(original_height,original_width),mode = 'bilinear')
save_image(bok_pred,'./outputs/stacked_DMSHN/'+ str(i)+'.png')
del bok_pred
del input_image