-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtask.py
156 lines (140 loc) · 8.32 KB
/
task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
from enum import Enum, unique
import numpy as np
import torch
from datasets import load_dataset
from sklearn.metrics import accuracy_score, f1_score
from torch.utils.data import TensorDataset
from scipy.stats import pearsonr, spearmanr
@unique
class Task(Enum):
# classification
tweeteval_emoji = "tweeteval_emoji"
tweeteval_emotion = "tweeteval_emotion"
tweeteval_hate = "tweeteval_hate"
tweeteval_irony = "tweeteval_irony"
tweeteval_offensive = "tweeteval_offensive"
tweeteval_sentiment = "tweeteval_sentiment"
tweeteval_stance = "tweeteval_stance"
isear_v3 = "isear_v3"
meld = "meld"
goemotions = "goemotions"
# regression
glue_sts_b = "glue_sts_b"
claire_v2 = "claire_v2"
emobank = "emobank"
def num_classes(self, tasks_config):
return tasks_config[self]['num_classes']
class TaskConfig:
def __init__(self, dataset_script, columns, batch_size, eval_batch_size, metrics, task_type="cls"):
self.dataset_script = dataset_script
self.columns = columns
self.batch_size = batch_size
self.eval_batch_size = eval_batch_size
self.metrics = metrics
self.task_type = task_type
def define_dataset_config(fine_tune_task=None, batch_size=64, pair_flag=False):
task_columns = ["label", "sentence1", "sentence2"] if pair_flag else ["label", "sentence1"]
datasets_config = {
# classification
Task.isear_v3: TaskConfig(dataset_script="./datasets/isear_v3.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2, metrics=[accuracy_score, f1_score]),
Task.goemotions: TaskConfig(dataset_script="./datasets/goemotions.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2, metrics=[accuracy_score, f1_score]),
Task.meld: TaskConfig(dataset_script="./datasets/meld.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2, metrics=[accuracy_score, f1_score]),
Task.tweeteval_emoji: TaskConfig(dataset_script="./datasets/tweeteval_emoji.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2, metrics=[accuracy_score, f1_score]),
Task.tweeteval_emotion: TaskConfig(dataset_script="./datasets/tweeteval_emotion.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2,
metrics=[accuracy_score, f1_score]),
Task.tweeteval_hate: TaskConfig(dataset_script="./datasets/tweeteval_hate.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2,
metrics=[accuracy_score, f1_score]),
Task.tweeteval_irony: TaskConfig(dataset_script="./datasets/tweeteval_irony.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2,
metrics=[accuracy_score, f1_score]),
Task.tweeteval_offensive: TaskConfig(dataset_script="./datasets/tweeteval_offensive.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2,
metrics=[accuracy_score, f1_score]),
Task.tweeteval_sentiment: TaskConfig(dataset_script="./datasets/tweeteval_sentiment.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2,
metrics=[accuracy_score, f1_score]),
Task.tweeteval_stance: TaskConfig(dataset_script="./datasets/tweeteval_stance.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2,
metrics=[accuracy_score, f1_score]),
# regression
Task.glue_sts_b: TaskConfig(dataset_script="./datasets/glue_sts_b.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2,
metrics=[pearsonr, spearmanr], task_type="res"),
Task.claire_v2: TaskConfig(dataset_script="./datasets/claire_v2.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2,
metrics=[pearsonr, spearmanr], task_type="res"),
Task.emobank: TaskConfig(dataset_script="./datasets/emobank.py", columns=task_columns,
batch_size=batch_size, eval_batch_size=batch_size * 2,
metrics=[pearsonr, spearmanr], task_type="res"),
}
if fine_tune_task is not None:
if type(fine_tune_task) == Task and fine_tune_task in datasets_config.keys():
# single task
datasets_config = dict((k, v) for k, v in datasets_config.items() if k == fine_tune_task)
else:
datasets_config = dict((k, v) for k, v in datasets_config.items() if k in fine_tune_task)
print("## datasets_config: ", datasets_config)
print("## sentences_pair_flag: ", pair_flag)
print("## fine_tune_task: ", fine_tune_task)
return datasets_config
def define_tasks_config(datasets_config, dataset_percentage=1.0, cache_dir="./datasets/cache/", class_weights_flag=False, seed=42):
tasks_config = {}
for id, (task, task_config) in enumerate(datasets_config.items()):
print("task: ", task)
print("task_config: ", task_config)
if not os.path.isdir(cache_dir): os.makedirs(cache_dir)
dataset_dic = load_dataset(path=task_config.dataset_script, cache_dir=cache_dir, split=None)
train_dataset, val_dataset, test_dataset = dataset_dic["train"], dataset_dic["validation"], dataset_dic["test"]
len_dataset = len(train_dataset)
print("## dataset_dic.shape: ", dataset_dic.shape)
if dataset_percentage < 1: np.random.seed(seed)
train_dataset = train_dataset.select(
list(np.random.choice(np.arange(len_dataset), int(len_dataset * dataset_percentage if dataset_percentage <= 1 else dataset_percentage), False)))
train_loader = torch.utils.data.DataLoader(train_dataset, num_workers=0, batch_size=task_config.batch_size, shuffle=len_dataset > 0)
dev_loader = torch.utils.data.DataLoader(val_dataset, num_workers=0, batch_size=task_config.eval_batch_size, shuffle=False)
test_loader = torch.utils.data.DataLoader(test_dataset, num_workers=0, batch_size=task_config.eval_batch_size, shuffle=False)
if class_weights_flag:
import sys, importlib
sys.path.append("./datasets")
dataset_module = importlib.import_module(task.name)
formatted_name = "".join([w.capitalize() for w in task.name.split('_')]) + "_Dataset"
dataset_class = getattr(dataset_module, formatted_name)
class_weights = list(dataset_class.LABEL2WEIGHT.values())
else:
class_weights = None
if task_config.task_type == "res":
tasks_config[task] = dict(
task_id=id,
class_names=list(range(train_dataset.features['label'].length)),
num_classes=train_dataset.features['label'].length,
columns=task_config.columns,
train_loader=train_loader,
dev_loader=dev_loader,
test_loader=test_loader,
test_dataset=test_dataset,
train_dataset=train_dataset,
class_weights=class_weights,
task_type=task_config.task_type
)
else:
tasks_config[task] = dict(
task_id=id,
class_names=train_dataset.features['label'].names,
num_classes=train_dataset.features['label'].num_classes,
columns=task_config.columns,
train_loader=train_loader,
dev_loader=dev_loader,
test_loader=test_loader,
test_dataset=test_dataset,
train_dataset=train_dataset,
class_weights=class_weights,
task_type=task_config.task_type
)
return tasks_config