-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluate_sal.py
133 lines (115 loc) · 4.8 KB
/
evaluate_sal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from __future__ import print_function
import numpy as np
import os
import PIL.Image as Image
import pdb
from multiprocessing import Pool
from functools import partial
import matplotlib.pyplot as plt
eps = np.finfo(float).eps
def print_table():
base_dir = '/home/zeng/data/datasets/saliency_Dataset'
algs = ['Ours-Seg', 'Ours-Seg-woSeg', 'Ours-N1-Seg', 'Ours-N1-Seg-woSeg']
datasets = ['ECSSD']
# datasets = ['ECSSD', 'PASCALS', 'HKU-IS', 'DUT-test']
# algs = ['Ours-Seg-crf']
for alg in algs:
print(alg+'& ', end='')
for i, dset in enumerate(datasets):
input_dir = '{}/results/{}-Sal/{}'.format(base_dir, dset, alg)
gt_dir = '{}/{}/masks'.format(base_dir, dset)
output_dir = '{}/results/{}-npy'.format(base_dir, dset)
if os.path.exists(os.path.join(output_dir, alg+'.npz')):
sb = np.load(os.path.join(output_dir, alg+'.npz'))
maxfm, mae = sb['maxfm'], sb['mea']
else:
maxfm, mae, _, _ = fm_and_mae(input_dir, gt_dir, output_dir, alg)
if i != len(datasets)-1:
print('%.3f&%.3f& '%(round(maxfm, 3), round(mae, 3)), end='')
else:
print('%.3f&%.3f\\\\'%(round(maxfm, 3), round(mae, 3)), end='\n')
print('\hline', end='\n')
def draw_curves():
base_dir = '/home/zeng/data/datasets/saliency_Dataset'
algs = ['Ours-Seg', 'Ours-Seg-woSeg', 'Ours-N1-Seg', 'Ours-N1-Seg-woSeg', 'DSS']
datasets = ['ECSSD']
# color = iter(plt.cm.rainbow(np.linspace(0, 1, len(algs))))
for dset in datasets:
fig = plt.figure()
ax = fig.add_subplot(111)
for i, alg in enumerate(algs):
sb = np.load('{}/results/{}-npy/{}.npz'.format(base_dir, dset, alg))
ax.plot(sb['recs'], sb['pres'], linewidth=2, label=alg)
ax.grid(True)
ax.set_xlabel('Recall', fontsize=14)
ax.set_ylabel('Precision', fontsize=14)
handles, labels = ax.get_legend_handles_labels()
lgd = ax.legend(handles, labels, loc='center left', bbox_to_anchor=(0.5, -0.5), ncol=8, fontsize=14)
fig.savefig('%s.pdf'%dset, bbox_extra_artists=(lgd,), bbox_inches='tight')
def eva_one(param):
input_name, gt_name = param
mask = Image.open(input_name)
gt = Image.open(gt_name)
mask = mask.resize(gt.size)
mask = np.array(mask, dtype=np.float)
if len(mask.shape) != 2:
mask = mask[:, :, 0]
mask = (mask - mask.min()) / (mask.max()-mask.min()+eps)
gt = np.array(gt, dtype=np.uint8)
if len(gt.shape)>2:
gt = gt[:, :, 0]
gt[gt != 0] = 1
pres = []
recs = []
mea = np.abs(gt-mask).mean()
# threshold fm
binary = np.zeros(mask.shape)
th = 2*mask.mean()
if th > 1:
th = 1
binary[mask >= th] = 1
sb = (binary * gt).sum()
pre = sb / (binary.sum()+eps)
rec = sb / (gt.sum()+eps)
thfm = 1.3 * pre * rec / (0.3 * pre + rec + eps)
for th in np.linspace(0, 1, 21):
binary = np.zeros(mask.shape)
binary[ mask >= th] = 1
pre = (binary * gt).sum() / (binary.sum()+eps)
rec = (binary * gt).sum() / (gt.sum()+ eps)
pres.append(pre)
recs.append(rec)
pres = np.array(pres)
recs = np.array(recs)
return thfm, mea, recs, pres
def fm_and_mae(input_dir, gt_dir, output_dir=None, name=None):
if output_dir is not None and not os.path.exists(output_dir):
os.mkdir(output_dir)
filelist_gt = os.listdir(gt_dir)
gt_format = filelist_gt[0].split('.')[-1]
filelist_gt = ['.'.join(f.split('.')[:-1]) for f in filelist_gt]
filelist_pred = os.listdir(input_dir)
pred_format = filelist_pred[0].split('.')[-1]
filelist_pred = ['.'.join(f.split('.')[:-1]) for f in filelist_pred]
filelist = list(set(filelist_gt)&set(filelist_pred))
inputlist = [os.path.join(input_dir, '.'.join([_name, pred_format])) for _name in filelist]
gtlist = [os.path.join(gt_dir, '.'.join([_name, gt_format])) for _name in filelist]
pool = Pool(4)
results = pool.map(eva_one, zip(inputlist, gtlist))
thfm, m_mea, m_recs, m_pres = list(map(list, zip(*results)))
m_mea = np.array(m_mea).mean()
m_pres = np.array(m_pres).mean(0)
m_recs = np.array(m_recs).mean(0)
thfm = np.array(thfm).mean()
fms = 1.3 * m_pres * m_recs / (0.3*m_pres + m_recs + eps)
maxfm = fms.max()
if not (output_dir is None or name is None):
np.savez('%s/%s.npz'%(output_dir, name), mea=m_mea, thfm=thfm, maxfm = maxfm, recs=m_recs, pres=m_pres, fms=fms)
return maxfm, m_mea, m_recs, m_pres
if __name__ == '__main__':
# fm, mae, _, _ = fm_and_mae('/home/crow/WSLfiles/WTCW_woSeg_densenet169/results',
# '/home/crow/data/datasets/saliency_Dataset/ECSSD/masks')
# print(fm)
# print(mae)
print_table()
# draw_curves()