forked from Liuyubao/Tensorflow-CNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simple_cnn.py
95 lines (74 loc) · 4.02 KB
/
simple_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# -*- coding: UTF-8 -*-
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession() # 创建一个会话
def weight_variable(shape):
'''初始化权重函数,truncated_normal创建 标准差为0.1的截断正态函数'''
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
'''初始化偏置函数,由于使用ReLU要加一些正值0.1,避免死亡节点(dead neurons)'''
initial = tf.constant(0.1, shape = shape)
return tf.Variable(initial)
def conv2d(x, W):
'''x:输入 w:卷积参数 例[5, 5, 1, 32]:5, 5为卷积核尺寸
1:为多少channel 彩色是3 灰度是1
32:为卷积核的数量(这个卷积层会提取的多少类特征)
strides:卷积模板移动的步长,[1, 2, 2, 1]官方前后必须为1,中间两个分别代表横向和竖向
padding:代表边界处理方式,SAME即输入和输出保持同样尺寸'''
return tf.nn.conv2d(x, W, strides = [1, 1, 1, 1], padding = 'SAME')
def max_pool_2x2(x):
'''池化层函数 max_pool:最大池化函数'''
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME')
#x:特征
x = tf.placeholder(tf.float32, [None, 784])
#y_真实的label
y_ = tf.placeholder(tf.float32, [None, 10])
'''卷积神经网络会利用到原有的空间结构信息,因此需要将1D的输入向量转化为2D图片结构(1x784->28x28)
因为只有一个颜色通道,故最终尺寸为[-1, 28, 28, 1]其中:-1代表样本数量不固定,1代表颜色通道数量'''
x_image = tf.reshape(x, [-1, 28, 28, 1])
'''先定义weights和bias,然后使用conv2d函数进行卷积操作并加上偏置,
接着使用ReLU激活函数进行非线性处理,最好使用max_pool_2x2对卷积的输出结果进行池化操作'''
w_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1)+b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
#定义第二个卷积层,不同在于特征变为64
w_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
'''经历两次2x2步长的最大池化,边长变为1/4,图片尺寸由28x28->7x7
由于第二个卷积层的卷积核数量为64,其输出tensor尺寸为7x7x64。
使用tf.reshape函数对其变形,转化为1D向量,然后连接一个全连接层,
隐含节点为1024,并使用Relu激活函数'''
w_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1)+b_fc1)
#为减轻过拟合,使用一个dropout层
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#dropout层输出连softmax层,得到最后的概率输出
w_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2)+b_fc2)
# 定义损失函数 cross_entropy
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv),
reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 评测准确率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 开始训练,mini-batch为50, 20000次迭代,每100次输出评测结果
tf.global_variables_initializer().run()
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, train accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
# 在测试集上进行测试
print("test accuracy%g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))