We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Thank you for visiting my issue! I'm using my own dataset,dim=1:
estimator = TempFlowEstimator( freq=custom_ds_metadata["freq"], prediction_length=custom_ds_metadata["prediction_length"], target_dim=dim, cell_type='GRU', input_size=6, scaling=True, dequantize=True, flow_type='MAF', trainer=Trainer(device=device, epochs=20, learning_rate=1e-4, num_batches_per_epoch=20, batch_size=256) ) train_output = estimator.train_model(training) predictor = train_output.predictor
--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_12548\2258705580.py in <module> 16 ) 17 ---> 18 train_output = estimator.train_model(training) 19 predictor = train_output.predictor ~\Downloads\pytorch-ts-master\pytorch-ts-master\pts\model\estimator.py in train_model(self, training_data, validation_data, num_workers, prefetch_factor, shuffle_buffer_length, cache_data, **kwargs) 101 transformation = self.create_transformation() 102 --> 103 trained_net = self.create_training_network(self.trainer.device) 104 105 input_names = get_module_forward_input_names(trained_net) ~\Downloads\pytorch-ts-master\pytorch-ts-master\pts\model\tempflow\tempflow_estimator.py in create_training_network(self, device) 206 n_hidden=self.n_hidden, 207 conditioning_length=self.conditioning_length, --> 208 dequantize=self.dequantize, 209 ).to(device) 210 c:\users\pc\appdata\local\programs\python\python37\lib\site-packages\gluonts\core\component.py in init_wrapper(*args, **kwargs) 342 self.__class__.__repr__ = validated_repr 343 --> 344 return init(self, **all_args) 345 346 # attach the Pydantic model as the attribute of the initializer wrapper ~\Downloads\pytorch-ts-master\pytorch-ts-master\pts\model\tempflow\tempflow_network.py in __init__(self, input_size, num_layers, num_cells, cell_type, history_length, context_length, prediction_length, dropout_rate, lags_seq, target_dim, conditioning_length, flow_type, n_blocks, hidden_size, n_hidden, dequantize, cardinality, embedding_dimension, scaling, **kwargs) 65 n_hidden=n_hidden, 66 hidden_size=hidden_size, ---> 67 cond_label_size=conditioning_length, 68 ) 69 self.dequantize = dequantize ~\Downloads\pytorch-ts-master\pytorch-ts-master\pts\modules\flows.py in __init__(self, n_blocks, input_size, hidden_size, n_hidden, cond_label_size, activation, input_order, batch_norm) 405 activation, 406 input_order, --> 407 self.input_degrees, 408 ) 409 ] ~\Downloads\pytorch-ts-master\pytorch-ts-master\pts\modules\flows.py in __init__(self, input_size, hidden_size, n_hidden, cond_label_size, activation, input_order, input_degrees) 250 # create masks 251 masks, self.input_degrees = create_masks( --> 252 input_size, hidden_size, n_hidden, input_order, input_degrees 253 ) 254 ~\Downloads\pytorch-ts-master\pytorch-ts-master\pts\modules\flows.py in create_masks(input_size, hidden_size, n_hidden, input_order, input_degrees) 22 ) 23 for _ in range(n_hidden + 1): ---> 24 degrees += [torch.arange(hidden_size) % (input_size - 1)] 25 degrees += ( 26 [torch.arange(input_size) % input_size - 1] RuntimeError: ZeroDivisionError
Python version: 3.7.0 GluonTS version: 0.9.0 MXNet version: without MXNet
The text was updated successfully, but these errors were encountered:
when flow_type=‘RealNVP’,there is no problem.
Sorry, something went wrong.
No branches or pull requests
Thank you for visiting my issue!
I'm using my own dataset,dim=1:
Error message or code output
Environment
Python version: 3.7.0
GluonTS version: 0.9.0
MXNet version: without MXNet
The text was updated successfully, but these errors were encountered: