-
Notifications
You must be signed in to change notification settings - Fork 2
/
inferenceCRNet.py
274 lines (161 loc) · 7.54 KB
/
inferenceCRNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import json
from commonsCRNet import get_model
# Custom Imports
import numpy as np
import PIL.Image as Image
import cv2
from torchvision import transforms
import matplotlib.pyplot as plt
import random
from threading import Thread, Event
# Access commons
model = get_model()
# Standard RGB transform
transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])
def get_prediction_webcam(event: Event ):
print("event_isSet In Inference: ", event.is_set())
fourcc = cv2.VideoWriter_fourcc(*'XVID')
#fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
print(frame.shape)
'''out video'''
width = frame.shape[1] #output size
height = frame.shape[0] #output size
out = cv2.VideoWriter('./demo.avi', fourcc, 30, (width, height))
while True:
try:
ret, frame = cap.read()
scale_factor = 0.5
frame = cv2.resize(frame, (0, 0), fx=scale_factor, fy=scale_factor)
ori_img = frame.copy()
except:
print("test end")
cap.release()
break
frame = frame.copy()
img = transform(frame)
img = img.cpu()
output = model(img.unsqueeze(0))
prediction = int(output.detach().cpu().sum().numpy())
x = random.randint(1,100000)
density = 'static/density_map'+str(x)+'.jpg'
plt.imsave(density, output.detach().cpu().numpy()[0][0])
cv2.putText(frame, "Count:" + str(prediction), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
org_img = 'static/org_img.jpg'
cv2.imwrite(org_img, frame)
#--------------------------------------------------
#--------------------------------------------------
image_names=[]
image_names = [org_img,density ]
print( " image names", image_names)
images = []
max_width = 0 # find the max width of all the images
total_height = 0 # the total height of the images (vertical stacking)
for name in image_names:
# open all images and find their sizes
images.append( cv2.resize( cv2.imread(name), (1200,450) ) )
# images.append(cv2.imread(name))
if images[-1].shape[1] > max_width:
max_width = images[-1].shape[1]
total_height += images[-1].shape[0]
# create a new array with a size large enough to contain all the images
final_image = np.zeros((total_height,max_width,3),dtype=np.uint8)
current_y = 0 # keep track of where your current image was last placed in the y coordinate
for image in images:
# add an image to the final array and increment the y coordinate
final_image[current_y:image.shape[0]+current_y,:image.shape[1],:] = image
current_y += image.shape[0]
print("final_image", final_image)
#-----------------------------------------------
#--------------------
cv2.imshow("dst",final_image)
if cv2.waitKey(1) & 0xFF == ord('q') :
break
print("event_isSet In Inference above if: ", event.is_set())
if event.is_set():
print('The thread was stopped prematurely.')
#cv2.destroyWindow("dst"+str(y))
#event.clear()
# cv2.waitKey(0)
cap.release()
cv2.destroyAllWindows()
break
def get_prediction(file):
print("------------------------------------")
print(file)
if (file.endswith(".mp4")):
fourcc = cv2.VideoWriter_fourcc(*'XVID')
#fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
cap = cv2.VideoCapture(file)
ret, frame = cap.read()
print(frame.shape)
'''out video'''
width = frame.shape[1] #output size
height = frame.shape[0] #output size
out = cv2.VideoWriter('./demo.avi', fourcc, 30, (width, height))
while True:
try:
ret, frame = cap.read()
scale_factor = 0.5
frame = cv2.resize(frame, (0, 0), fx=scale_factor, fy=scale_factor)
ori_img = frame.copy()
except:
print("test end")
cap.release()
break
frame = frame.copy()
#image = tensor_transform(frame)
#image = img_transform(image).unsqueeze(0)
#image = image.to(device)
img = transform(frame)
img = img.cpu()
output = model(img.unsqueeze(0))
prediction = int(output.detach().cpu().sum().numpy())
x = random.randint(1,100000)
density = 'static/density_map'+str(x)+'.jpg'
plt.imsave(density, output.detach().cpu().numpy()[0][0])
cv2.putText(frame, "Count:" + str(prediction), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
#img1 = cv2.convertScaleAbs(output.detach().cpu().numpy()[0][0], alpha=(255.0))
#cv2.imshow("dst",img1)
org_img = 'static/org_img.jpg'
cv2.imwrite(org_img, frame)
#--------------------------------------------------
#--------------------------------------------------
image_names = [org_img,density ]
images = []
max_width = 0 # find the max width of all the images
total_height = 0 # the total height of the images (vertical stacking)
for name in image_names:
# open all images and find their sizes
images.append( cv2.resize( cv2.imread(name), (1200,450) ) )
# images.append(cv2.imread(name))
if images[-1].shape[1] > max_width:
max_width = images[-1].shape[1]
total_height += images[-1].shape[0]
# create a new array with a size large enough to contain all the images
final_image = np.zeros((total_height,max_width,3),dtype=np.uint8)
current_y = 0 # keep track of where your current image was last placed in the y coordinate
for image in images:
# add an image to the final array and increment the y coordinate
final_image[current_y:image.shape[0]+current_y,:image.shape[1],:] = image
current_y += image.shape[0]
#-----------------------------------------------
#--------------------
cv2.imshow("dst",final_image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
print("event_isSet In Inference: ", event.is_set())
if event.is_set():
print('The thread was stopped prematurely.')
cv2. destroyAllWindows()
break
else :
img = transform(Image.open(file).convert('RGB'))
img = img.cpu()
output = model(img.unsqueeze(0))
prediction = int(output.detach().cpu().sum().numpy())
x = random.randint(1,100000)
density = 'static/density_map'+str(x)+'.jpg'
plt.imsave(density, output.detach().cpu().numpy()[0][0])
return prediction, density