-
Notifications
You must be signed in to change notification settings - Fork 2
/
camera_yolo.py
236 lines (183 loc) · 8.83 KB
/
camera_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import os
import platform
import sys
from pathlib import Path
import random
import torch
import numpy as np
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode
import contextlib
import glob
import hashlib
import json
import math
import os
import random
import shutil
import time
from itertools import repeat
from multiprocessing.pool import Pool, ThreadPool
from pathlib import Path
from threading import Thread
from urllib.parse import urlparse
import numpy as np
import psutil
import torch
import torch.nn.functional as F
import torchvision
import yaml
from PIL import ExifTags, Image, ImageOps
from torch.utils.data import DataLoader, Dataset, dataloader, distributed
from tqdm import tqdm
from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste,
letterbox, mixup, random_perspective)
from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, check_dataset, check_requirements,
check_yaml, clean_str, cv2, is_colab, is_kaggle, segments2boxes, unzip_file, xyn2xy,
xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
from utils.torch_utils import torch_distributed_zero_first
device = select_device('')
weights='./yolo-crowd.pt'
model = DetectMultiBackend(weights, device=device, dnn=False, data=ROOT /'data/coco128.yaml', fp16=False)
class VideoCamera(object):
weights='./yolo-crowd.pt' # model path or triton URL
source=ROOT / 'data/images' # file/dir/URL/glob/screen/0(webcam)
data=ROOT / 'data/coco128.yaml' # dataset.yaml path
imgsz=(640, 640) # inference size (height, width)
conf_thres=0.25 # confidence threshold
iou_thres=0.45 # NMS IOU threshold
max_det=1000 # maximum detections per image
device='' # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False # show results
save_txt=False # save results to *.txt
save_conf=False # save confidences in --save-txt labels
save_crop=False # save cropped prediction boxes
nosave=False # do not save images/videos
classes=None # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False # class-agnostic NMS
augment=False # augmented inference
visualize=False # visualize features
update=False # update all models
project=ROOT / 'runs/detect' # save results to project/name
name='exp' # save results to project/name
exist_ok=False # existing project/name ok, do not increment
line_thickness=3 # bounding box thickness (pixels)
hide_labels=False # hide labels
hide_conf=False # hide confidences
half=False # use FP16 half-precision inference
dnn=False # use OpenCV DNN for ONNX inference
vid_stride=1 # video frame-rate stride
def __init__(self,fileName):
# Using OpenCV to capture from device 0. If you have trouble capturing
# from a webcam, comment the line below out and use a video file
# instead.
if (fileName ==''):
self.video = cv2.VideoCapture(0)
else:
self.video = cv2.VideoCapture(fileName)
# self.video = cv2.resize(self.video,(840,640))
# If you decide to use video.mp4, you must have this file in the folder
# as the main.py.
# self.video = cv2.VideoCapture('video.mp4')
def __del__(self):
self.video.release()
def get_frame(self):
cap =self.video
fourcc = cv2.VideoWriter_fourcc(*'XVID')
#fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
#cap = cv2.VideoCapture(args.video_path)
#cap= cv2.VideoCapture(gstreamer_pipeline(flip_method=0), cv2.CAP_GSTREAMER)
ret, frame = cap.read()
print(frame.shape)
'''out video'''
width = frame.shape[1] #output size
height = frame.shape[0] #output size
out = cv2.VideoWriter('./demo.avi', fourcc, 30, (width, height))
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size((640,640), s=stride) # check image size
while True:
try:
ret, frame = cap.read()
scale_factor = 0.5
frame = cv2.resize(frame, (0, 0), fx=scale_factor, fy=scale_factor)
ori_img = frame.copy()
except:
print("test end")
cap.release()
break
frame = frame.copy()
source = str(frame)
bs = 1 # batch_size
with torch.no_grad():
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
with dt[0]:
im = letterbox(frame, 640, stride=32, auto=True)[0] # padded resize
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im = np.ascontiguousarray(im)
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with dt[1]:
pred = model(im, augment=False, visualize=False)
# NMS
with dt[2]:
pred = non_max_suppression(pred, 0.25, 0.45, None, False, max_det=1000)
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
#p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
#p = Path(p) # to Path
#s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(frame.shape)[[1, 0, 1, 0]] # normalization gain whwh
annotator = Annotator(frame, line_width=1,font_size=1, example=str(names))
n=0
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], frame.shape).round()
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
#s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = f'{names[c]} {conf:.02f}'
annotator.box_label(xyxy, label, color=colors(c, True))
# Stream results
im0 = annotator.result()
if torch.is_tensor(n):
prediction = n.item()
else:
prediction = n
img_to_draw = cv2.resize(im0, (1500,720))
cv2.putText(img_to_draw, 'Number of people=' + str(prediction), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
#cv2.imshow('l' , np.array(im0, dtype = np.uint8 ) )
cv2.waitKey(25)
res = img_to_draw
im0 = annotator.result()
if torch.is_tensor(n):
prediction = n.item()
else:
prediction = n
res = img_to_draw
# We are using Motion JPEG, but OpenCV defaults to capture raw images,
# so we must encode it into JPEG in order to correctly display the
# video stream.
ret, jpeg = cv2.imencode('.jpg', res)
return jpeg.tobytes()