forked from joeaortiz/gbp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ba.py
106 lines (84 loc) · 4.4 KB
/
ba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
Bundle Adjustment using GBP.
"""
import numpy as np
import argparse
from gbp import gbp_ba
import vis
parser = argparse.ArgumentParser()
parser.add_argument("--bal_file", required=True,
help="BAL style file with BA data")
parser.add_argument("--n_iters", type=int, default=200,
help="Number of iterations of GBP")
parser.add_argument("--gauss_noise_std", type=int, default=2,
help="Standard deviation of Gaussian noise of measurement model.")
parser.add_argument("--loss", default=None,
help="Loss function: None (squared error), huber or constant.")
parser.add_argument("--Nstds", type=float, default=3.,
help="If loss is not None, number of stds at which point the "
"loss transitions to linear or constant.")
parser.add_argument("--beta", type=float, default=0.01,
help="Threshold for the change in the mean of adjacent beliefs for "
"relinearisation at a factor.")
parser.add_argument("--num_undamped_iters", type=int, default=6,
help="Number of undamped iterations at a factor node after relinearisation.")
parser.add_argument("--min_linear_iters", type=int, default=8,
help="Minimum number of iterations between consecutive relinearisations of a factor.")
parser.add_argument("--eta_damping", type=float, default=0.4,
help="Max damping of information vector of messages.")
parser.add_argument("--prior_std_weaker_factor", type=float, default=50.,
help="Ratio of std of information matrix at measurement factors / "
"std of information matrix at prior factors.")
parser.add_argument("--float_implementation", action='store_true', default=False,
help="Float implementation, so start with strong priors that are weakened")
parser.add_argument("--final_prior_std_weaker_factor", type=float, default=100.,
help="Ratio of information at measurement factors / information at prior factors "
"after the priors are weakened (for floats implementation).")
parser.add_argument("--num_weakening_steps", type=int, default=5,
help="Number of steps over which the priors are weakened (for floats implementation)")
args = parser.parse_args()
print('Configs: \n', args)
configs = dict({
'gauss_noise_std': args.gauss_noise_std,
'loss': args.loss,
'Nstds': args.Nstds,
'beta': args.beta,
'num_undamped_iters': args.num_undamped_iters,
'min_linear_iters': args.min_linear_iters,
'eta_damping': args.eta_damping,
'prior_std_weaker_factor': args.prior_std_weaker_factor,
})
if args.float_implementation:
configs['final_prior_std_weaker_factor'] = args.final_prior_std_weaker_factor
configs['num_weakening_steps'] = args.num_weakening_steps
weakening_factor = np.log10(args.final_prior_std_weaker_factor) / args.num_weakening_steps
graph = gbp_ba.create_ba_graph(args.bal_file, configs)
print(f'\nData: {args.bal_file}\n')
print(f'Number of keyframes: {len(graph.cam_nodes)}')
print(f'Number of landmarks: {len(graph.lmk_nodes)}')
print(f'Number of measurement factors: {len(graph.factors)}\n')
# Sets prior factors automatically to be much weaker than measurement factors.
graph.generate_priors_var(weaker_factor=args.prior_std_weaker_factor)
graph.update_all_beliefs()
# Set up visualisation
scene = vis.ba_vis.create_scene(graph)
viewer = vis.ba_vis.TrimeshSceneViewer(scene=scene, resolution=scene.camera.resolution)
viewer.show()
for i in range(args.n_iters):
# To copy weakening of strong priors as must be done on IPU with float
if args.float_implementation and (i+1) % 2 == 0 and (i < args.num_weakening_steps * 2):
print('Weakening priors')
graph.weaken_priors(weakening_factor)
# At the start, allow a larger number of iterations before linearising
if i == 3 or i == 8:
for factor in graph.factors:
factor.iters_since_relin = 1
are = graph.are()
energy = graph.energy()
n_factor_relins = 0
for factor in graph.factors:
if factor.iters_since_relin == 0:
n_factor_relins += 1
print(f'Iteration {i} // ARE {are:.4f} // Energy {energy:.4f} // Num factors relinearising {n_factor_relins}')
viewer.update(graph)
graph.synchronous_iteration(robustify=True, local_relin=True)