-
Notifications
You must be signed in to change notification settings - Fork 1
/
util.h
933 lines (782 loc) · 31.4 KB
/
util.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SRC_UTIL_H_
#define SRC_UTIL_H_
#if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
#include "v8.h"
#include "node.h"
#include <climits>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <array>
#include <limits>
#include <memory>
#include <string>
#include <string_view>
#include <type_traits>
#include <set>
#include <unordered_map>
#include <utility>
#include <vector>
#ifdef __GNUC__
#define MUST_USE_RESULT __attribute__((warn_unused_result))
#else
#define MUST_USE_RESULT
#endif
namespace node {
// Maybe remove kPathSeparator when cpp17 is ready
#ifdef _WIN32
constexpr char kPathSeparator = '\\';
/* MAX_PATH is in characters, not bytes. Make sure we have enough headroom. */
#define PATH_MAX_BYTES (MAX_PATH * 4)
#else
constexpr char kPathSeparator = '/';
#define PATH_MAX_BYTES (PATH_MAX)
#endif
// These should be used in our code as opposed to the native
// versions as they abstract out some platform and or
// compiler version specific functionality
// malloc(0) and realloc(ptr, 0) have implementation-defined behavior in
// that the standard allows them to either return a unique pointer or a
// nullptr for zero-sized allocation requests. Normalize by always using
// a nullptr.
template <typename T>
inline T* UncheckedRealloc(T* pointer, size_t n);
template <typename T>
inline T* UncheckedMalloc(size_t n);
template <typename T>
inline T* UncheckedCalloc(size_t n);
// Same things, but aborts immediately instead of returning nullptr when
// no memory is available.
template <typename T>
inline T* Realloc(T* pointer, size_t n);
template <typename T>
inline T* Malloc(size_t n);
template <typename T>
inline T* Calloc(size_t n);
inline char* Malloc(size_t n);
inline char* Calloc(size_t n);
inline char* UncheckedMalloc(size_t n);
inline char* UncheckedCalloc(size_t n);
template <typename T>
inline T MultiplyWithOverflowCheck(T a, T b);
namespace per_process {
// Tells whether the per-process V8::Initialize() is called and
// if it is safe to call v8::Isolate::TryGetCurrent().
extern bool v8_initialized;
} // namespace per_process
// Used by the allocation functions when allocation fails.
// Thin wrapper around v8::Isolate::LowMemoryNotification() that checks
// whether V8 is initialized.
void LowMemoryNotification();
// The reason that Assert() takes a struct argument instead of individual
// const char*s is to ease instruction cache pressure in calls from CHECK.
struct AssertionInfo {
const char* file_line; // filename:line
const char* message;
const char* function;
};
[[noreturn]] void NODE_EXTERN_PRIVATE Assert(const AssertionInfo& info);
[[noreturn]] void NODE_EXTERN_PRIVATE Abort();
void DumpBacktrace(FILE* fp);
// Windows 8+ does not like abort() in Release mode
#ifdef _WIN32
#define ABORT_NO_BACKTRACE() _exit(134)
#else
#define ABORT_NO_BACKTRACE() abort()
#endif
#define ABORT() node::Abort()
#define ERROR_AND_ABORT(expr) \
do { \
/* Make sure that this struct does not end up in inline code, but */ \
/* rather in a read-only data section when modifying this code. */ \
static const node::AssertionInfo args = { \
__FILE__ ":" STRINGIFY(__LINE__), #expr, PRETTY_FUNCTION_NAME \
}; \
node::Assert(args); \
} while (0)
#ifdef __GNUC__
#define LIKELY(expr) __builtin_expect(!!(expr), 1)
#define UNLIKELY(expr) __builtin_expect(!!(expr), 0)
#define PRETTY_FUNCTION_NAME __PRETTY_FUNCTION__
#else
#define LIKELY(expr) expr
#define UNLIKELY(expr) expr
#define PRETTY_FUNCTION_NAME ""
#endif
#define STRINGIFY_(x) #x
#define STRINGIFY(x) STRINGIFY_(x)
#define CHECK(expr) \
do { \
if (UNLIKELY(!(expr))) { \
ERROR_AND_ABORT(expr); \
} \
} while (0)
#define CHECK_EQ(a, b) CHECK((a) == (b))
#define CHECK_GE(a, b) CHECK((a) >= (b))
#define CHECK_GT(a, b) CHECK((a) > (b))
#define CHECK_LE(a, b) CHECK((a) <= (b))
#define CHECK_LT(a, b) CHECK((a) < (b))
#define CHECK_NE(a, b) CHECK((a) != (b))
#define CHECK_NULL(val) CHECK((val) == nullptr)
#define CHECK_NOT_NULL(val) CHECK((val) != nullptr)
#define CHECK_IMPLIES(a, b) CHECK(!(a) || (b))
#ifdef DEBUG
#define DCHECK(expr) CHECK(expr)
#define DCHECK_EQ(a, b) CHECK((a) == (b))
#define DCHECK_GE(a, b) CHECK((a) >= (b))
#define DCHECK_GT(a, b) CHECK((a) > (b))
#define DCHECK_LE(a, b) CHECK((a) <= (b))
#define DCHECK_LT(a, b) CHECK((a) < (b))
#define DCHECK_NE(a, b) CHECK((a) != (b))
#define DCHECK_NULL(val) CHECK((val) == nullptr)
#define DCHECK_NOT_NULL(val) CHECK((val) != nullptr)
#define DCHECK_IMPLIES(a, b) CHECK(!(a) || (b))
#else
#define DCHECK(expr)
#define DCHECK_EQ(a, b)
#define DCHECK_GE(a, b)
#define DCHECK_GT(a, b)
#define DCHECK_LE(a, b)
#define DCHECK_LT(a, b)
#define DCHECK_NE(a, b)
#define DCHECK_NULL(val)
#define DCHECK_NOT_NULL(val)
#define DCHECK_IMPLIES(a, b)
#endif
#define UNREACHABLE(...) \
ERROR_AND_ABORT("Unreachable code reached" __VA_OPT__(": ") __VA_ARGS__)
// ECMA262 20.1.2.6 Number.MAX_SAFE_INTEGER (2^53-1)
constexpr int64_t kMaxSafeJsInteger = 9007199254740991;
inline bool IsSafeJsInt(v8::Local<v8::Value> v);
// TAILQ-style intrusive list node.
template <typename T>
class ListNode;
// TAILQ-style intrusive list head.
template <typename T, ListNode<T> (T::*M)>
class ListHead;
template <typename T>
class ListNode {
public:
inline ListNode();
inline ~ListNode();
inline void Remove();
inline bool IsEmpty() const;
ListNode(const ListNode&) = delete;
ListNode& operator=(const ListNode&) = delete;
private:
template <typename U, ListNode<U> (U::*M)> friend class ListHead;
friend int GenDebugSymbols();
ListNode* prev_;
ListNode* next_;
};
template <typename T, ListNode<T> (T::*M)>
class ListHead {
public:
class Iterator {
public:
inline T* operator*() const;
inline const Iterator& operator++();
inline bool operator!=(const Iterator& that) const;
private:
friend class ListHead;
inline explicit Iterator(ListNode<T>* node);
ListNode<T>* node_;
};
inline ListHead() = default;
inline ~ListHead();
inline void PushBack(T* element);
inline void PushFront(T* element);
inline bool IsEmpty() const;
inline T* PopFront();
inline Iterator begin() const;
inline Iterator end() const;
ListHead(const ListHead&) = delete;
ListHead& operator=(const ListHead&) = delete;
private:
friend int GenDebugSymbols();
ListNode<T> head_;
};
// The helper is for doing safe downcasts from base types to derived types.
template <typename Inner, typename Outer>
class ContainerOfHelper {
public:
inline ContainerOfHelper(Inner Outer::*field, Inner* pointer);
template <typename TypeName>
inline operator TypeName*() const;
private:
Outer* const pointer_;
};
// Calculate the address of the outer (i.e. embedding) struct from
// the interior pointer to a data member.
template <typename Inner, typename Outer>
constexpr ContainerOfHelper<Inner, Outer> ContainerOf(Inner Outer::*field,
Inner* pointer);
class KVStore {
public:
KVStore() = default;
virtual ~KVStore() = default;
KVStore(const KVStore&) = delete;
KVStore& operator=(const KVStore&) = delete;
KVStore(KVStore&&) = delete;
KVStore& operator=(KVStore&&) = delete;
virtual v8::MaybeLocal<v8::String> Get(v8::Isolate* isolate,
v8::Local<v8::String> key) const = 0;
virtual v8::Maybe<std::string> Get(const char* key) const = 0;
virtual void Set(v8::Isolate* isolate,
v8::Local<v8::String> key,
v8::Local<v8::String> value) = 0;
virtual int32_t Query(v8::Isolate* isolate,
v8::Local<v8::String> key) const = 0;
virtual int32_t Query(const char* key) const = 0;
virtual void Delete(v8::Isolate* isolate, v8::Local<v8::String> key) = 0;
virtual v8::Local<v8::Array> Enumerate(v8::Isolate* isolate) const = 0;
virtual std::shared_ptr<KVStore> Clone(v8::Isolate* isolate) const;
virtual v8::Maybe<bool> AssignFromObject(v8::Local<v8::Context> context,
v8::Local<v8::Object> entries);
v8::Maybe<bool> AssignToObject(v8::Isolate* isolate,
v8::Local<v8::Context> context,
v8::Local<v8::Object> object);
static std::shared_ptr<KVStore> CreateMapKVStore();
};
// Convenience wrapper around v8::String::NewFromOneByte().
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const char* data,
int length = -1);
// For the people that compile with -funsigned-char.
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const signed char* data,
int length = -1);
inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
const unsigned char* data,
int length = -1);
// Used to be a macro, hence the uppercase name.
template <int N>
inline v8::Local<v8::String> FIXED_ONE_BYTE_STRING(
v8::Isolate* isolate,
const char(&data)[N]) {
return OneByteString(isolate, data, N - 1);
}
template <std::size_t N>
inline v8::Local<v8::String> FIXED_ONE_BYTE_STRING(
v8::Isolate* isolate,
const std::array<char, N>& arr) {
return OneByteString(isolate, arr.data(), N - 1);
}
// Swaps bytes in place. nbytes is the number of bytes to swap and must be a
// multiple of the word size (checked by function).
inline void SwapBytes16(char* data, size_t nbytes);
inline void SwapBytes32(char* data, size_t nbytes);
inline void SwapBytes64(char* data, size_t nbytes);
// tolower() is locale-sensitive. Use ToLower() instead.
inline char ToLower(char c);
inline std::string ToLower(const std::string& in);
// toupper() is locale-sensitive. Use ToUpper() instead.
inline char ToUpper(char c);
inline std::string ToUpper(const std::string& in);
// strcasecmp() is locale-sensitive. Use StringEqualNoCase() instead.
inline bool StringEqualNoCase(const char* a, const char* b);
// strncasecmp() is locale-sensitive. Use StringEqualNoCaseN() instead.
inline bool StringEqualNoCaseN(const char* a, const char* b, size_t length);
template <typename T, size_t N>
constexpr size_t arraysize(const T (&)[N]) {
return N;
}
template <typename T, size_t N>
constexpr size_t strsize(const T (&)[N]) {
return N - 1;
}
// Allocates an array of member type T. For up to kStackStorageSize items,
// the stack is used, otherwise malloc().
template <typename T, size_t kStackStorageSize = 1024>
class MaybeStackBuffer {
public:
const T* out() const {
return buf_;
}
T* out() {
return buf_;
}
// operator* for compatibility with `v8::String::(Utf8)Value`
T* operator*() {
return buf_;
}
const T* operator*() const {
return buf_;
}
T& operator[](size_t index) {
CHECK_LT(index, length());
return buf_[index];
}
const T& operator[](size_t index) const {
CHECK_LT(index, length());
return buf_[index];
}
size_t length() const {
return length_;
}
// Current maximum capacity of the buffer with which SetLength() can be used
// without first calling AllocateSufficientStorage().
size_t capacity() const {
return capacity_;
}
// Make sure enough space for `storage` entries is available.
// This method can be called multiple times throughout the lifetime of the
// buffer, but once this has been called Invalidate() cannot be used.
// Content of the buffer in the range [0, length()) is preserved.
void AllocateSufficientStorage(size_t storage) {
CHECK(!IsInvalidated());
if (storage > capacity()) {
bool was_allocated = IsAllocated();
T* allocated_ptr = was_allocated ? buf_ : nullptr;
buf_ = Realloc(allocated_ptr, storage);
capacity_ = storage;
if (!was_allocated && length_ > 0)
memcpy(buf_, buf_st_, length_ * sizeof(buf_[0]));
}
length_ = storage;
}
void SetLength(size_t length) {
// capacity() returns how much memory is actually available.
CHECK_LE(length, capacity());
length_ = length;
}
void SetLengthAndZeroTerminate(size_t length) {
// capacity() returns how much memory is actually available.
CHECK_LE(length + 1, capacity());
SetLength(length);
// T() is 0 for integer types, nullptr for pointers, etc.
buf_[length] = T();
}
// Make dereferencing this object return nullptr.
// This method can be called multiple times throughout the lifetime of the
// buffer, but once this has been called AllocateSufficientStorage() cannot
// be used.
void Invalidate() {
CHECK(!IsAllocated());
capacity_ = 0;
length_ = 0;
buf_ = nullptr;
}
// If the buffer is stored in the heap rather than on the stack.
bool IsAllocated() const {
return !IsInvalidated() && buf_ != buf_st_;
}
// If Invalidate() has been called.
bool IsInvalidated() const {
return buf_ == nullptr;
}
// Release ownership of the malloc'd buffer.
// Note: This does not free the buffer.
void Release() {
CHECK(IsAllocated());
buf_ = buf_st_;
length_ = 0;
capacity_ = arraysize(buf_st_);
}
MaybeStackBuffer()
: length_(0), capacity_(arraysize(buf_st_)), buf_(buf_st_) {
// Default to a zero-length, null-terminated buffer.
buf_[0] = T();
}
explicit MaybeStackBuffer(size_t storage) : MaybeStackBuffer() {
AllocateSufficientStorage(storage);
}
~MaybeStackBuffer() {
if (IsAllocated())
free(buf_);
}
private:
size_t length_;
// capacity of the malloc'ed buf_
size_t capacity_;
T* buf_;
T buf_st_[kStackStorageSize];
};
// Provides access to an ArrayBufferView's storage, either the original,
// or for small data, a copy of it. This object's lifetime is bound to the
// original ArrayBufferView's lifetime.
template <typename T, size_t kStackStorageSize = 64>
class ArrayBufferViewContents {
public:
ArrayBufferViewContents() = default;
ArrayBufferViewContents(const ArrayBufferViewContents&) = delete;
void operator=(const ArrayBufferViewContents&) = delete;
explicit inline ArrayBufferViewContents(v8::Local<v8::Value> value);
explicit inline ArrayBufferViewContents(v8::Local<v8::Object> value);
explicit inline ArrayBufferViewContents(v8::Local<v8::ArrayBufferView> abv);
inline void Read(v8::Local<v8::ArrayBufferView> abv);
inline void ReadValue(v8::Local<v8::Value> buf);
inline bool WasDetached() const { return was_detached_; }
inline const T* data() const { return data_; }
inline size_t length() const { return length_; }
private:
// Declaring operator new and delete as deleted is not spec compliant.
// Therefore, declare them private instead to disable dynamic alloc.
void* operator new(size_t size);
void* operator new[](size_t size);
void operator delete(void*, size_t);
void operator delete[](void*, size_t);
T stack_storage_[kStackStorageSize];
T* data_ = nullptr;
size_t length_ = 0;
bool was_detached_ = false;
};
class Utf8Value : public MaybeStackBuffer<char> {
public:
explicit Utf8Value(v8::Isolate* isolate, v8::Local<v8::Value> value);
inline std::string ToString() const { return std::string(out(), length()); }
inline bool operator==(const char* a) const {
return strcmp(out(), a) == 0;
}
};
class TwoByteValue : public MaybeStackBuffer<uint16_t> {
public:
explicit TwoByteValue(v8::Isolate* isolate, v8::Local<v8::Value> value);
};
class BufferValue : public MaybeStackBuffer<char> {
public:
explicit BufferValue(v8::Isolate* isolate, v8::Local<v8::Value> value);
inline std::string ToString() const { return std::string(out(), length()); }
};
#define SPREAD_BUFFER_ARG(val, name) \
CHECK((val)->IsArrayBufferView()); \
v8::Local<v8::ArrayBufferView> name = (val).As<v8::ArrayBufferView>(); \
const size_t name##_offset = name->ByteOffset(); \
const size_t name##_length = name->ByteLength(); \
char* const name##_data = \
static_cast<char*>(name->Buffer()->Data()) + name##_offset; \
if (name##_length > 0) CHECK_NE(name##_data, nullptr);
// Use this when a variable or parameter is unused in order to explicitly
// silence a compiler warning about that.
template <typename T> inline void USE(T&&) {}
template <typename Fn>
struct OnScopeLeaveImpl {
Fn fn_;
bool active_;
explicit OnScopeLeaveImpl(Fn&& fn) : fn_(std::move(fn)), active_(true) {}
~OnScopeLeaveImpl() { if (active_) fn_(); }
OnScopeLeaveImpl(const OnScopeLeaveImpl& other) = delete;
OnScopeLeaveImpl& operator=(const OnScopeLeaveImpl& other) = delete;
OnScopeLeaveImpl(OnScopeLeaveImpl&& other)
: fn_(std::move(other.fn_)), active_(other.active_) {
other.active_ = false;
}
OnScopeLeaveImpl& operator=(OnScopeLeaveImpl&& other) {
if (this == &other) return *this;
this->~OnScopeLeave();
new (this)OnScopeLeaveImpl(std::move(other));
return *this;
}
};
// Run a function when exiting the current scope. Used like this:
// auto on_scope_leave = OnScopeLeave([&] {
// // ... run some code ...
// });
template <typename Fn>
inline MUST_USE_RESULT OnScopeLeaveImpl<Fn> OnScopeLeave(Fn&& fn) {
return OnScopeLeaveImpl<Fn>{std::move(fn)};
}
// Simple RAII wrapper for contiguous data that uses malloc()/free().
template <typename T>
struct MallocedBuffer {
T* data;
size_t size;
T* release() {
T* ret = data;
data = nullptr;
return ret;
}
void Truncate(size_t new_size) {
CHECK(new_size <= size);
size = new_size;
}
void Realloc(size_t new_size) {
Truncate(new_size);
data = UncheckedRealloc(data, new_size);
}
inline bool is_empty() const { return data == nullptr; }
MallocedBuffer() : data(nullptr), size(0) {}
explicit MallocedBuffer(size_t size) : data(Malloc<T>(size)), size(size) {}
MallocedBuffer(T* data, size_t size) : data(data), size(size) {}
MallocedBuffer(MallocedBuffer&& other) : data(other.data), size(other.size) {
other.data = nullptr;
}
MallocedBuffer& operator=(MallocedBuffer&& other) {
this->~MallocedBuffer();
return *new(this) MallocedBuffer(std::move(other));
}
~MallocedBuffer() {
free(data);
}
MallocedBuffer(const MallocedBuffer&) = delete;
MallocedBuffer& operator=(const MallocedBuffer&) = delete;
};
template <typename T>
class NonCopyableMaybe {
public:
NonCopyableMaybe() : empty_(true) {}
explicit NonCopyableMaybe(T&& value)
: empty_(false),
value_(std::move(value)) {}
bool IsEmpty() const {
return empty_;
}
const T* get() const {
return empty_ ? nullptr : &value_;
}
const T* operator->() const {
CHECK(!empty_);
return &value_;
}
T&& Release() {
CHECK_EQ(empty_, false);
empty_ = true;
return std::move(value_);
}
private:
bool empty_;
T value_;
};
// Test whether some value can be called with ().
template <typename T, typename = void>
struct is_callable : std::is_function<T> { };
template <typename T>
struct is_callable<T, typename std::enable_if<
std::is_same<decltype(void(&T::operator())), void>::value
>::type> : std::true_type { };
template <typename T, void (*function)(T*)>
struct FunctionDeleter {
void operator()(T* pointer) const { function(pointer); }
typedef std::unique_ptr<T, FunctionDeleter> Pointer;
};
template <typename T, void (*function)(T*)>
using DeleteFnPtr = typename FunctionDeleter<T, function>::Pointer;
std::vector<std::string> SplitString(const std::string& in,
char delim,
bool skipEmpty = true);
inline v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
std::string_view str,
v8::Isolate* isolate = nullptr);
template <typename T, typename test_for_number =
typename std::enable_if<std::numeric_limits<T>::is_specialized, bool>::type>
inline v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
const T& number,
v8::Isolate* isolate = nullptr);
template <typename T>
inline v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
const std::vector<T>& vec,
v8::Isolate* isolate = nullptr);
template <typename T>
inline v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
const std::set<T>& set,
v8::Isolate* isolate = nullptr);
template <typename T, typename U>
inline v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
const std::unordered_map<T, U>& map,
v8::Isolate* isolate = nullptr);
// These macros expects a `Isolate* isolate` and a `Local<Context> context`
// to be in the scope.
#define READONLY_PROPERTY(obj, name, value) \
do { \
obj->DefineOwnProperty( \
context, FIXED_ONE_BYTE_STRING(isolate, name), value, v8::ReadOnly) \
.Check(); \
} while (0)
#define READONLY_DONT_ENUM_PROPERTY(obj, name, var) \
do { \
obj->DefineOwnProperty( \
context, \
OneByteString(isolate, name), \
var, \
static_cast<v8::PropertyAttribute>(v8::ReadOnly | v8::DontEnum)) \
.Check(); \
} while (0)
#define READONLY_FALSE_PROPERTY(obj, name) \
READONLY_PROPERTY(obj, name, v8::False(isolate))
#define READONLY_TRUE_PROPERTY(obj, name) \
READONLY_PROPERTY(obj, name, v8::True(isolate))
#define READONLY_STRING_PROPERTY(obj, name, str) \
READONLY_PROPERTY(obj, name, ToV8Value(context, str).ToLocalChecked())
// Variation on NODE_DEFINE_CONSTANT that sets a String value.
#define NODE_DEFINE_STRING_CONSTANT(target, name, constant) \
do { \
v8::Isolate* isolate = target->GetIsolate(); \
v8::Local<v8::String> constant_name = \
v8::String::NewFromUtf8(isolate, name).ToLocalChecked(); \
v8::Local<v8::String> constant_value = \
v8::String::NewFromUtf8(isolate, constant).ToLocalChecked(); \
v8::PropertyAttribute constant_attributes = \
static_cast<v8::PropertyAttribute>(v8::ReadOnly | v8::DontDelete); \
target \
->DefineOwnProperty(isolate->GetCurrentContext(), \
constant_name, \
constant_value, \
constant_attributes) \
.Check(); \
} while (0)
enum class Endianness { LITTLE, BIG };
inline Endianness GetEndianness() {
// Constant-folded by the compiler.
const union {
uint8_t u8[2];
uint16_t u16;
} u = {{1, 0}};
return u.u16 == 1 ? Endianness::LITTLE : Endianness::BIG;
}
inline bool IsLittleEndian() {
return GetEndianness() == Endianness::LITTLE;
}
inline bool IsBigEndian() {
return GetEndianness() == Endianness::BIG;
}
// Round up a to the next highest multiple of b.
template <typename T>
constexpr T RoundUp(T a, T b) {
return a % b != 0 ? a + b - (a % b) : a;
}
// Align ptr to an `alignment`-bytes boundary.
template <typename T, typename U>
constexpr T* AlignUp(T* ptr, U alignment) {
return reinterpret_cast<T*>(
RoundUp(reinterpret_cast<uintptr_t>(ptr), alignment));
}
class SlicedArguments : public MaybeStackBuffer<v8::Local<v8::Value>> {
public:
inline explicit SlicedArguments(
const v8::FunctionCallbackInfo<v8::Value>& args, size_t start = 0);
};
// Convert a v8::PersistentBase, e.g. v8::Global, to a Local, with an extra
// optimization for strong persistent handles.
class PersistentToLocal {
public:
// If persistent.IsWeak() == false, then do not call persistent.Reset()
// while the returned Local<T> is still in scope, it will destroy the
// reference to the object.
template <class TypeName>
static inline v8::Local<TypeName> Default(
v8::Isolate* isolate,
const v8::PersistentBase<TypeName>& persistent) {
if (persistent.IsWeak()) {
return PersistentToLocal::Weak(isolate, persistent);
} else {
return PersistentToLocal::Strong(persistent);
}
}
// Unchecked conversion from a non-weak Persistent<T> to Local<T>,
// use with care!
//
// Do not call persistent.Reset() while the returned Local<T> is still in
// scope, it will destroy the reference to the object.
template <class TypeName>
static inline v8::Local<TypeName> Strong(
const v8::PersistentBase<TypeName>& persistent) {
DCHECK(!persistent.IsWeak());
return *reinterpret_cast<v8::Local<TypeName>*>(
const_cast<v8::PersistentBase<TypeName>*>(&persistent));
}
template <class TypeName>
static inline v8::Local<TypeName> Weak(
v8::Isolate* isolate,
const v8::PersistentBase<TypeName>& persistent) {
return v8::Local<TypeName>::New(isolate, persistent);
}
};
// Can be used as a key for std::unordered_map when lookup performance is more
// important than size and the keys are statically used to avoid redundant hash
// computations.
class FastStringKey {
public:
constexpr explicit FastStringKey(std::string_view name);
struct Hash {
constexpr size_t operator()(const FastStringKey& key) const;
};
constexpr bool operator==(const FastStringKey& other) const;
constexpr std::string_view as_string_view() const;
private:
static constexpr size_t HashImpl(std::string_view str);
const std::string_view name_;
const size_t cached_hash_;
};
// Like std::static_pointer_cast but for unique_ptr with the default deleter.
template <typename T, typename U>
std::unique_ptr<T> static_unique_pointer_cast(std::unique_ptr<U>&& ptr) {
return std::unique_ptr<T>(static_cast<T*>(ptr.release()));
}
#define MAYBE_FIELD_PTR(ptr, field) ptr == nullptr ? nullptr : &(ptr->field)
// Returns a non-zero code if it fails to open or read the file,
// aborts if it fails to close the file.
int ReadFileSync(std::string* result, const char* path);
v8::Local<v8::FunctionTemplate> NewFunctionTemplate(
v8::Isolate* isolate,
v8::FunctionCallback callback,
v8::Local<v8::Signature> signature = v8::Local<v8::Signature>(),
v8::ConstructorBehavior behavior = v8::ConstructorBehavior::kAllow,
v8::SideEffectType side_effect = v8::SideEffectType::kHasSideEffect,
const v8::CFunction* c_function = nullptr);
// Convenience methods for NewFunctionTemplate().
void SetMethod(v8::Local<v8::Context> context,
v8::Local<v8::Object> that,
const char* name,
v8::FunctionCallback callback);
void SetFastMethod(v8::Local<v8::Context> context,
v8::Local<v8::Object> that,
const char* name,
v8::FunctionCallback slow_callback,
const v8::CFunction* c_function);
void SetProtoMethod(v8::Isolate* isolate,
v8::Local<v8::FunctionTemplate> that,
const char* name,
v8::FunctionCallback callback);
void SetInstanceMethod(v8::Isolate* isolate,
v8::Local<v8::FunctionTemplate> that,
const char* name,
v8::FunctionCallback callback);
// Safe variants denote the function has no side effects.
void SetMethodNoSideEffect(v8::Local<v8::Context> context,
v8::Local<v8::Object> that,
const char* name,
v8::FunctionCallback callback);
void SetProtoMethodNoSideEffect(v8::Isolate* isolate,
v8::Local<v8::FunctionTemplate> that,
const char* name,
v8::FunctionCallback callback);
enum class SetConstructorFunctionFlag {
NONE,
SET_CLASS_NAME,
};
void SetConstructorFunction(v8::Local<v8::Context> context,
v8::Local<v8::Object> that,
const char* name,
v8::Local<v8::FunctionTemplate> tmpl,
SetConstructorFunctionFlag flag =
SetConstructorFunctionFlag::SET_CLASS_NAME);
void SetConstructorFunction(v8::Local<v8::Context> context,
v8::Local<v8::Object> that,
v8::Local<v8::String> name,
v8::Local<v8::FunctionTemplate> tmpl,
SetConstructorFunctionFlag flag =
SetConstructorFunctionFlag::SET_CLASS_NAME);
} // namespace node
#endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
#endif // SRC_UTIL_H_