-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathslides.html
290 lines (195 loc) · 8.31 KB
/
slides.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
<!DOCTYPE html>
<html>
<head>
<title>Boosting</title>
<meta charset="utf-8">
<link rel="stylesheet" href="https://unpkg.com/[email protected]/build/pure-min.css" integrity="sha384-oAOxQR6DkCoMliIh8yFnu25d7Eq/PHS21PClpwjOTeU2jRSq11vu66rf90/cZr47" crossorigin="anonymous"> <style>
@import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
@import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
@import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);
body { font-family: 'Droid Serif'; }
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: normal;
}
.remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
.reference{
font-size: 10px;
}
.smaller-font { font-size:14px }
@page {
size: 908px 681px;
margin: 0;
}
@media print {
.remark-slide-scaler {
width: 100% !important;
height: 100% !important;
transform: scale(1) !important;
top: 0 !important;
left: 0 !important;
}
}
.figure img{
height: 550px;
}
.figure-200 img{
height: 200px;
}
.figure-250 img{
height: 250px;
}
.figure-300 img{
height: 300px;
}
.figure-350 img{
height: 350px;
}
.figure-w500 img{
width: 500px;
}
.figure-w600 img{
width: 600px;
}
</style>
</head>
<body>
<textarea id="source">
class: center, middle
# Boosting
CS534 - Machine Learning
Yubin Park, PhD
---
class: center, middle
Recall our original problem:
$$ \min_{f} \mathcal{L}(\mathbf{y}, f(\mathbf{X}))$$
As the original problem is difficult to solve,
we limited our search as follows:
$$ \min_{\mathbf{\beta}} \mathcal{L}(\mathbf{y}, f(\mathbf{X};\mathbf{\beta}))$$
(Remember the linear models)
---
class: center, middle
This time, let's try to solve
the difficult one directly.
Perhaps, we can try [Gradient Descent](https://en.wikipedia.org/wiki/Gradient_descent)
on the function itself?
$$ \mathbf{f}\_k = \mathbf{f}\_{k-1} - \rho\_k \frac{\partial \mathcal{L}(\mathbf{y}, \mathbf{f})}{\partial \mathbf{f}} \Bigr|\_{\mathbf{f}=\mathbf{f}_{k-1}} $$
where `\(\mathbf{f} = [f(\mathbf{x}_1), f(\mathbf{x}_2), \cdots, f(\mathbf{x}_n)]^T\)`
---
class: center, middle
Note that we are looking at
$$ \frac{\partial \mathcal{L}(\mathbf{y}, \mathbf{f})}{\partial \mathbf{f}} $$
not
$$ \frac{\partial \mathcal{L}(\mathbf{y}, f(\mathbf{X}; \mathbf{\beta}))}{\partial \mathbf{\beta}} $$
---
## Meaning of the Functional Gradient
Consider Squared Loss for example.
$$ \frac{\partial \mathcal{L}(\mathbf{y}, \mathbf{f})}{\partial \mathbf{f}} = \frac{1}{2}\frac{\partial (\mathbf{y}- \mathbf{f})^T(\mathbf{y}- \mathbf{f})}{\partial \mathbf{f}} = -(\mathbf{y} - \mathbf{f}) $$
Plugging the above into the update form:
$$ \mathbf{f}\_k = \mathbf{f}\_{k-1} + \rho\_k (\mathbf{y} - \mathbf{f}_{k-1})$$
If we initialize `\(\mathbf{f}_0 = \mathbf{0}\)`, then
$$ \mathbf{f}\_1 = \mathbf{f}\_{0} + \rho\_1 (\mathbf{y} - \mathbf{f}_{0}) = \rho\_1 \mathbf{y} $$
$$ \mathbf{f}\_2 = \mathbf{f}\_{1} + \rho\_2 (\mathbf{y} - \mathbf{f}_{1}) = (\rho\_1 + \rho\_2 - \rho_1\rho\_2 )\mathbf{y}$$
$$ \vdots $$
$$ \lim_{k \rightarrow \infty} \mathbf{f}_k = \mathbf{y}$$
---
## Approximating the Functional Gradient (1)
This seems too obvious and not that useful.
In the end, we need a function that can process **unseen** data.
One idea is to **approximate** the gradient with another function:
$$ \frac{\partial \mathcal{L}(\mathbf{y}, \mathbf{f})}{\partial \mathbf{f}} \Bigr|\_{\mathbf{f}=\mathbf{f}\_{k-1}} \approx h\_{k} (\mathbf{X})$$
where `\(h_{k} (\mathbf{X})\)` is a function that maps `\(\mathbb{R}^{n \times m}\)` to `\(\mathbb{R}^{n }\)`.
For example, if `\(h(\mathbf{X}) = \mathbf{X}\mathbf{\beta}\)` (a linear regression),
$$ \mathbf{y} - \mathbf{f}\_{k-1} \approx \mathbf{X}\mathbf{\beta}_{k}$$
$$ \mathbf{f}\_k = \mathbf{f}\_{k-1} + \rho\_k \mathbf{X}\hat{\mathbf{\beta}}_{k} $$
Similar to **Forward Stagewise Regression**?
---
## Approximating the Functional Gradient (2)
After `\(K\)` iterations, you have
$$ \mathbf{f}\_K = \mathbf{f}\_0 + \sum_{k=1}^K \rho_k h_k(\mathbf{X})$$
For a new dataset, `\( \mathbf{X}^{\prime} \)`, you can use this collection of functions to predict the target variable:
$$ \hat{\mathbf{y}} = \mathbf{f}\_0 + \sum_{k=1}^K \rho_k h_k(\mathbf{X}^{\prime}) $$
---
## Gradient Boosting Machine
1. Initialize `\( \mathbf{f}_0 = \arg \min_{\gamma} \mathcal{L}(\mathbf{y}, \gamma) \)`
2. For `\(k=1\)` to `\(K\)`:
1. Set `\( \mathbf{r}_k = - \frac{\partial \mathcal{L}(\mathbf{y}, \mathbf{f})}{\partial \mathbf{f}} \Bigr|_{\mathbf{f}=\mathbf{f}_{k-1}} \)`
2. Fit `\(h_k(\mathbf{X})\)` to `\(\mathbf{r}_k\)`
3. Find `\(\rho_k\)` that minimizes the loss function
4. Update `\(\mathbf{f}_k = \mathbf{f}_{k-1} + \rho_k h_k(\mathbf{X})\)`
`\(h(\mathbf{X})\)` can be any parametric or non-parametric function.
Decision Tree is a popular choice for `\(h(\mathbf{X})\)`.
When Decision Tree is used as `\(h(\mathbf{X})\)`, then you can estimate `\(\rho_k\)` for each region (or node) of the estimated decision tree. This variant of Gradient Boosting Machine (GBM) is called **[TreeBoost](https://projecteuclid.org/euclid.aos/1013203451)**.
---
## GBM for Classification
$$ \mathcal{L}(\mathbf{y}, f(\mathbf{X})) = - \sum_{i=1}^{n} [ y_i f(\mathbf{x}_i) - \log (1 + \exp(f(\mathbf{x}_i)))] $$
Note that, for Logistic Regression, we have `\( f(\mathbf{x}_i) = \mathbf{x}_i\mathbf{\beta} \)`.
Taking the first derivative w.r.t. the function:
$$ - \frac{\partial \mathcal{L}(\mathbf{y}, \mathbf{f})}{\partial \mathbf{f}} = [y_1 - p_1, y_2 - p_2, \cdots, y_n - p_n ]^T$$
where `\( p_i = \frac{1}{1 + \exp(-f(\mathbf{x}_i))} \)`.
---
## Stochastic Gradient TreeBoost
GBM can fit the training data very well, sometimes too well. To mitigate overfitting to the training data, [Stochastic Gradient TreeBoost (SGTB)](https://statweb.stanford.edu/~jhf/ftp/stobst.pdf) adds two regularization mechanisms:
- **Shrinkage**: when updating the function, we reduce the contribution of each model by a factor `\(0< \nu < 1\)`. Thus, the update becomes:
$$ \mathbf{f}\_k = \mathbf{f}\_{k-1} + \nu \rho_k h_k(\mathbf{X}) $$
- **Subsampling**: to reduce the variance (in the bias-variance trade-off), at each iteration, we fit a model on randomly subsampled data points. Typically 50% to 70%.
---
class: middle, center
![gbm](img/gbm.png)
.reference[Chapter 10 of [ESLII](https://web.stanford.edu/~hastie/ElemStatLearn/)]
---
class: middle, center
** IMPORTANT **
Please read the Chapter 10.14 of [ESLII](https://web.stanford.edu/~hastie/ElemStatLearn/).
---
class: center, middle
## Questions?
</textarea>
<script src="https://remarkjs.com/downloads/remark-latest.min.js">
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS_HTML&delayStartupUntil=configured" type="text/javascript">
</script>
<script type="text/javascript">
var hljs = remark.highlighter.engine;
/*
Language: terminal console
Author: Josh Bode <[email protected]>
*/
hljs.registerLanguage('terminal', function() {
return {
contains: [
{
className: 'string',
begin: '^([\\w.]+)@([\\w.]+)'
},
{
className: 'constant',
begin: ' (.*) \\$ '
},
{
className: 'ansi',
begin: '<span style\\="([^"]+)">',
end: '<\\/span>'
}
]
}
});
var slideshow = remark.create({
highlightStyle: 'monokai'
});
// extract the embedded styling from ansi spans
var highlighted = document.querySelectorAll("code.terminal span.hljs-ansi");
Array.prototype.forEach.call(highlighted, function(next) {
next.insertAdjacentHTML("beforebegin", next.textContent);
next.parentNode.removeChild(next);
});
// Setup MathJax
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
MathJax.Hub.Configured();
</script>
</body>
</html>