-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathdata_provider.py
executable file
·140 lines (130 loc) · 4.71 KB
/
data_provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import random
import cv2
from util import rotate_and_crop, AsyncTaskManager
class DataProvider(object):
def __init__(self,
data,
output_size=-1,
limit=-1,
synchronous=False,
augmentation=0,
bnw=False,
blur=False,
default_batch_size=64,
train=True,
seperation=None,
image_scaling=1.0,
*args,
**kwargs):
print((data.shape))
self.blur = blur
if limit == -1:
limit = data.shape[0]
elif isinstance(limit, float):
limit = int(data.shape[0] * limit)
else:
limit = limit
self.image_scaling = image_scaling
self.data = data[:limit]
if seperation is not None:
seperator = int(round(len(self.data) * seperation))
if train:
self.data = self.data[:seperator]
else:
self.data = self.data[seperator:]
self.bnw = bnw
if self.bnw:
self.data = 0.27 * self.data[:, :, :,
0] + 0.67 * self.data[:, :, :,
1] + 0.06 * self.data[:, :, :,
2]
self.data = self.data[:, :, :, None]
self.num_images = len(self.data)
self.default_batch_size = default_batch_size
self.image_size = data.shape[1:3]
self.augmentation = augmentation
self.indices = list(range(self.num_images))
random.shuffle(self.indices)
self.synchronous = synchronous
self.async_task = None
if output_size == -1:
self.output_size = data.shape[1:3]
else:
self.output_size = (output_size, output_size)
def augment(self, img, strength):
s = self.output_size[0]
start_x = random.randrange(0, img.shape[0] - s + 1)
start_y = random.randrange(0, img.shape[1] - s + 1)
img = img[start_x:start_x + s, start_y:start_y + s]
### No resizing and rotating....
# img = rotate_and_crop(img, (random.random() - 0.5) * strength * 300)
# img = cv2.resize(img, self.output_size)
if random.random() < 0.5:
# left-right flip
img = img[:, ::-1]
if len(img.shape) < 3:
img = img[:, :, None]
if self.blur:
angle = random.uniform(-1, 1) * 10
# img = cv2.GaussianBlur(img, (3, 3), 0)
img = rotate_and_crop(img, angle)
img = rotate_and_crop(img, -angle)
img = cv2.resize(img, dsize=self.output_size)
return img
def get_next_batch_(self, batch_size):
batch = []
while len(batch) < batch_size:
s = min(len(self.indices), batch_size - len(batch))
batch += self.indices[:s]
self.indices = self.indices[s:]
if len(self.indices) == 0:
self.indices = list(range(self.num_images))
random.shuffle(self.indices)
batch_images = np.empty(
(batch_size,) + self.output_size + self.data.shape[3:],
dtype=self.data.dtype)
if self.augmentation > 0:
for i in range(len(batch)):
batch_images[i] = self.augment(self.data[batch[i]], self.augmentation)
else:
for i in range(len(batch)):
batch_images[i] = cv2.resize(self.data[batch[i]], self.output_size)
batch = np.array(batch)
## Hao
return batch_images * self.image_scaling, np.zeros((batch_size,))
# print(batch.shape)
# return batch_images * self.image_scaling, batch # np.zeros((batch_size,))
def get_next_batch(self, batch_size):
if self.synchronous or (self.async_task and
batch_size != self.default_batch_size):
return self.get_next_batch_(batch_size)
else:
if self.async_task is None:
self.async_task = AsyncTaskManager(
target=self.get_next_batch_, args=(self.default_batch_size,))
if batch_size != self.default_batch_size:
ret = self.get_next_batch_(batch_size)
else:
ret = self.async_task.get_next()
return ret
def get_random_batch(self, batch_size):
indices = list(range(self.num_images))
random.shuffle(indices)
indices = indices[:batch_size]
return self.data[indices], np.zeros((self.num_images,))
# Returns a list of image batches
# the last one may not be a full batch
def get_test_batches(self, batch_size):
batches = []
for i in range((len(self.data) + batch_size - 1) // batch_size):
batch = []
for img in self.data[i * batch_size:(i + 1) * batch_size]:
img *= self.image_scaling
if self.augmentation > 0:
batch.append(self.augment(img, self.augmentation))
else:
batch.append(cv2.resize(img, self.output_size))
batch = np.stack(batch, axis=0)
batches.append(batch)
return batches, None