-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path(D-3-3) auditReportDate
193 lines (162 loc) · 6.01 KB
/
(D-3-3) auditReportDate
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 13 15:19:08 2020
@author: user
"""
from bs4 import BeautifulSoup
import os
import glob
import pandas as pd
import numpy as np
import re
def col_span_count(soup):
try:
result = int(soup["colspan"])
except KeyError:
result= 1
return result
def row_span_count(soup):
try:
result = int(soup["rowspan"])
except KeyError:
result= 1
return result
def FindTargetTable(soup):
tables = soup.find_all("table")
for i in tables:
tds = i.find_all("td")
if len(tds) > 20: # 시간 파트가 약 80정도 된다. 비교 표시 없는 경우 td가 50도 안된다. 첫번째 나오는 20 초과 table 선택
break
return i
def MatrixGenerator(table):
table_row = table.find_all("tr")
columnCount = 0
for i in table_row:
columnNumber = 0
for j in i.find_all(["th", "td"]):
try:
columnNumber += int(j["colspan"])
except KeyError:
columnNumber += 1
if columnNumber > columnCount:
columnCount = columnNumber
rowCount = len(table_row)
matrix = [['#' for x in range(columnCount)] for y in range(rowCount)]
for i in range(len(table_row)):
locator = [i for i, x in enumerate(matrix[i]) if x=='#'] # https://stackoverflow.com/questions/9542738/python-find-in-list
column, colSpan = 0, 0
for j in table_row[i].find_all(["th", "td"]):
rowSpanCount = row_span_count(j)
colSpanCount = col_span_count(j)
for k in range(rowSpanCount):
for l in range(colSpanCount):
row = i + k
column = locator[l+colSpan]
matrix[row][column] = j.text.strip()
colSpan += col_span_count(j)
return matrix
def ParsingTime(matrix, isComparative, tableLength, file, report):
if isComparative:
container = []
tableLength = int(tableLength / 2)
for i in range(tableLength):
container.append(file + "_" + matrix[report][1] + "_" + matrix[1][2+2*i] + "_" + matrix[report][2+2*i].replace('-', '0').replace(',','') + "\n")
else:
container = []
tableLength = int(tableLength)
for i in range(tableLength):
container(file + "_" + matrix[report][1] + "_" + matrix[1][2+i] + "_" + matrix[report][2+i].replace('-', '0').replace(',','') + "\n")
return container
def Indexing(matrix):
"""
당기, 전기 부분 삭제한 경우들이 있어서 찾아야함
"""
container = []
for i in matrix:
try:
i[0:2].index("투입 인원수")
container.append(matrix.index(i))
except ValueError:
pass
try:
i[0:2].index("분ㆍ반기검토")
container.append(matrix.index(i))
except ValueError:
pass
try:
i[0:2].index("감사")
container.append(matrix.index(i))
except ValueError:
pass
try:
i[0:2].index("합계")
container.append(matrix.index(i))
except ValueError:
pass
return container
# 1. 작업 폴더로 변경
os.chdir("E:\workingDirectory\\") # 작업 폴더로 변경
# 2. 타겟 폴더에 있는 필요 문서 경로 리스트업
pathList = []
for path in [".\A001_2017\\", ".\A001_2018\\",
".\A001_2019\\", ".\A001_2020\\",
".\F001_2017\\", ".\F001_2018\\",
".\F001_2019\\", ".\F001_2020\\",
".\F002_2017\\", ".\F002_2018\\",
".\F002_2019\\", ".\F002_2020\\"
]:
path = path + "*감사인의감사보고서*.*" # 필요한 Keyword 입력
pathInProcess = glob.glob(path)
pathList= pathList + pathInProcess
# 3. 입수 과정에서 중복입수되어 표시된 duplicated 표시 파일 제거
pathList = [x for x in pathList if "duplicated" not in x]
# 4. 분리
pathList = [x for x in pathList if "(2017." in x] + [x for x in pathList if "(2018." in x] + [x for x in pathList if "(2019." in x]
# 5. Preprocess
PathListDf = pd.DataFrame(pathList)
df = pd.DataFrame([x.split("_") for x in pathList])
df["path"] = PathListDf[0]
df["con"] = df[6].str.contains("연결")
df['con'] = np.where(df['con']==True, "C", "S")
df['amend'] = df[6].str.contains("정정")
df['amend'] = np.where(df['amend']==True, "A", "B")
df["key"] = df[2] + df[6].str.slice(stop=10) + df["con"] + df["amend"] + df[5] + df[8] + df[10]
# key = 접수일 + 보고서 제출일(DRT 인증일) + 연결(C/S) + 정정(A/B) + 보고기간종료월 + 종목코드 + 법인등록번호
df["duplc"] = df.duplicated(subset=["key"], keep=False)
isTrue = df[df["duplc"] == True]
df = df.drop_duplicates(subset=["key"])
pathListOut = df["path"].tolist()
p = re.compile("[0-9]{4}년[0-9]{1,2}월[0-9]{1,2}일")
count = 0
result = []
for file in pathListOut:
html = open(file, "r", encoding="utf-8")
soup = BeautifulSoup(html, "lxml")
html.close()
# 분석
content = ''.join(soup.text.split())
firstPart = content.split("의견근거")[0]
secondPart = content.split("재무제표에대한경")
secondPart = secondPart[len(secondPart) - 1]
content = firstPart + secondPart
output = set(p.findall(content))
resultString = ''
for i in output:
resultString = resultString + i + "_"
result.append(resultString)
count += 1
print(count, end='\n')
df["auditReportDate"] = result
df = df.drop([0, 1, 14, "path", "duplc"], axis=1)
df = df.sort_values(by=[10, 5, "con", 2, 6, "amend"],
ascending=[True, True, True, False, False, True])
df["toDrop"] = 1
for i in range(1, len(df)):
if df.iloc[i,3] == df.iloc[i-1,3] and df.iloc[i,8] == df.iloc[i-1,8]:
df.iloc[i, 16] = df.iloc[i-1, 16] + 1
else:
df.iloc[i, 16] = 1
df = df[df["toDrop"] == 1]
df = df.drop("toDrop", axis=1)
os.chdir(r"C:\\Users\\yoont\\Desktop\\output\\")
df.to_csv("wp01.data04.output.csv", sep="\t")