-
Notifications
You must be signed in to change notification settings - Fork 3
/
run_pretrain.py
360 lines (311 loc) · 11.2 KB
/
run_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# --------------------------------------------------------------------------------
# Exploring the Role of Mean Teachers in Self-supervised Masked Auto-Encoders (ICLR'23)
# Copyright (c) 2022 Electronics and Telecommunications Research Institute (ETRI).
# All Rights Reserved.
# Written by Youngwan Lee
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------------------------------
# Modified from MAE (https://github.com/facebookresearch/mae)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# --------------------------------------------------------------------------------
"""Pre-training script on ImageNet"""
from util import misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from util.lr_sched import cosine_scheduler
import models_rc
from engine_pretrain import train_one_epoch
from timm.optim import optim_factory
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import timm
assert timm.__version__ == "0.3.2" # version check
def get_args_parser():
"""
Default args here should pre-train RC-MAE
with the same hyperparameters as in our paper.
"""
parser = argparse.ArgumentParser("MAE pre-training", add_help=False)
parser.add_argument(
"--batch_size",
default=64,
type=int,
help="Batch size per GPU \
(effective batch size is batch_size * accum_iter * # gpus",
)
parser.add_argument("--epochs", default=400, type=int)
parser.add_argument(
"--accum_iter",
default=1,
type=int,
help="Accumulate gradient iterations \
(for increasing the effective batch size under memory constraints)",
)
# Model parameters
parser.add_argument(
"--model",
default="mae_vit_large_patch16",
type=str,
metavar="MODEL",
help="Name of model to train",
)
parser.add_argument("--input_size", default=224, type=int, help="images input size")
parser.add_argument(
"--mask_ratio",
default=0.75,
type=float,
help="Masking ratio (percentage of removed patches).",
)
parser.add_argument(
"--norm_pix_loss",
action="store_true",
help="Use (per-patch) normalized pixels as targets for computing loss",
)
parser.set_defaults(norm_pix_loss=False)
# loss balance weight gamma
parser.add_argument(
"--gamma", type=float, default=1.0, help="loss balance weight gamma"
)
# Optimizer parameters
parser.add_argument(
"--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)"
)
parser.add_argument(
"--lr",
type=float,
default=None,
metavar="LR",
help="learning rate (absolute lr)",
)
parser.add_argument(
"--blr",
type=float,
default=1e-3,
metavar="LR",
help="base learning rate: absolute_lr = \
base_lr * total_batch_size / 256",
)
parser.add_argument(
"--min_lr",
type=float,
default=0.0,
metavar="LR",
help="lower lr bound for cyclic schedulers that hit 0",
)
parser.add_argument(
"--warmup_epochs", type=int, default=40, metavar="N", help="epochs to warmup LR"
)
# Dataset parameters
parser.add_argument(
"--data_path",
default="/datasets01/imagenet_full_size/061417/",
type=str,
help="dataset path",
)
parser.add_argument(
"--output_dir",
default="./output_dir",
help="path where to save, empty for no saving",
)
parser.add_argument(
"--log_dir", default="./output_dir", help="path where to tensorboard log"
)
parser.add_argument(
"--device", default="cuda", help="device to use for training / testing"
)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument(
"--start_epoch", default=0, type=int, metavar="N", help="start epoch"
)
parser.add_argument("--num_workers", default=10, type=int)
parser.add_argument(
"--pin_mem",
action="store_true",
help="Pin CPU memory in DataLoader for more efficient \
(sometimes) transfer to GPU.",
)
parser.add_argument("--no_pin_mem", action="store_false", dest="pin_mem")
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument(
"--world_size", default=1, type=int, help="number of distributed processes"
)
parser.add_argument("--local_rank", default=-1, type=int)
parser.add_argument("--dist_on_itp", action="store_true")
parser.add_argument(
"--dist_url", default="env://", help="url used to set up distributed training"
)
# For teacher
parser.add_argument(
"--momentum_teacher",
default=0.996,
type=float,
help="""Base EMA
parameter for teacher update. The value is increased to 1
during training with cosine schedule.
We recommend setting a higher value with small batches:
for example use 0.9995 with batch size of 256.""",
)
return parser
def main(args):
""" main training part """
misc.init_distributed_mode(args)
print("job dir: {}".format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(", ", ",\n"))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# simple augmentation
transform_train = transforms.Compose(
[
transforms.RandomResizedCrop(
args.input_size, scale=(0.2, 1.0), interpolation=3
), # 3 is bicubic
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
dataset_train = datasets.ImageFolder(
os.path.join(args.data_path, "train"), transform=transform_train
)
print(dataset_train)
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print(f"Sampler_train = {str(sampler_train)}")
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
# define the model
student = models_rc.__dict__[args.model](norm_pix_loss=args.norm_pix_loss)
# teacher network
teacher = models_rc.__dict__[args.model](
norm_pix_loss=args.norm_pix_loss, compute_loss=False
)
student.to(device)
# teacher
teacher.to(device)
student_without_ddp = student
print(f"Model = {str(student_without_ddp)}")
# teacher
teacher_without_ddp = teacher
print(f"Teacher = {str(teacher_without_ddp)}")
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
student = torch.nn.parallel.DistributedDataParallel(
student, device_ids=[args.gpu], find_unused_parameters=True
)
student_without_ddp = student.module
# teacher and student start with the same weights
teacher_without_ddp.load_state_dict(student.module.state_dict())
# there is no backpropagation through the teacher, so no need for gradients
for param in teacher.parameters():
param.requires_grad = False
print(f"Student and Teacher are built: they are both {args.model} network.")
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(
student_without_ddp, args.weight_decay
)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
# momentum parameter is increased to 1. during training with a cosine
# schedule
momentum_schedule = cosine_scheduler(
args.momentum_teacher, 1, args.epochs, len(data_loader_train)
)
# When resume
misc.load_model_distill(
args=args,
student=student,
student_without_ddp=student_without_ddp,
teacher=teacher,
teacher_without_ddp=teacher_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
student,
teacher,
teacher_without_ddp,
data_loader_train,
optimizer,
device,
epoch,
loss_scaler,
momentum_schedule,
log_writer=log_writer,
args=args,
)
if args.output_dir and (epoch % 20 == 0 or epoch + 1 == args.epochs):
misc.save_model_distill(
args=args,
student=student,
student_without_ddp=student_without_ddp,
teacher=teacher,
teacher_without_ddp=teacher_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
epoch=epoch,
)
log_stats = {
**{f"train_{k}": v for k, v in train_stats.items()},
"epoch": epoch,
}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(
os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8"
) as fp:
fp.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"Training time {total_time_str}")
if __name__ == "__main__":
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)