-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathsamplers.py
72 lines (61 loc) · 2.48 KB
/
samplers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
"""
Sample class
"""
import math
import torch
import torch.distributed as dist
class RASampler(torch.utils.data.Sampler):
"""Sampler that restricts data loading to a subset of the dataset for
distributed, with repeated augmentation.
It ensures that different each augmented version of a sample will be
visible to a different process (GPU) Heavily based on
torch.utils.data.DistributedSampler
"""
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.num_samples = int(math.ceil(len(self.dataset) * 3.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
# self.num_selected_samples = int(math.ceil(len(self.dataset) / self.num_replicas))
self.num_selected_samples = int(
math.floor(len(self.dataset) // 256 * 256 / self.num_replicas)
)
self.shuffle = shuffle
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
if self.shuffle:
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else:
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices = [
ele for ele in indices for i in range(3)
] # Note: indices = [ele1, ele1, ele1, ele2, ele2, ele2, ..., elen, elen, elen].
indices += indices[: (self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank : self.total_size : self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices[: self.num_selected_samples])
def __len__(self):
# return the number of selected samples
return self.num_selected_samples
def set_epoch(self, epoch):
"""
sef epoch
"""
self.epoch = epoch