-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathengine.py
126 lines (103 loc) · 4.02 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
"""Train and eval functions used in main.py."""
import math
import sys
from typing import Iterable, Optional
import torch
from timm.data import Mixup
from timm.utils import ModelEma, accuracy
import utils
def train_one_epoch(
model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
max_norm: float = 0,
model_ema: Optional[ModelEma] = None,
mixup_fn: Optional[Mixup] = None,
disable_amp: bool = False,
):
"""train one epoch function."""
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", utils.SmoothedValue(
window_size=1, fmt="{value:.6f}"))
header = "Epoch: [{}]".format(epoch)
print_freq = 10
for samples, targets in metric_logger.log_every(
data_loader, print_freq, header):
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
if disable_amp:
# Disable AMP and try to solve the NaN issue.
# Ref: https://github.com/facebookresearch/deit/issues/29
outputs = model(samples)
loss = criterion(outputs, targets)
else:
with torch.cuda.amp.autocast():
outputs = model(samples)
loss = criterion(outputs, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
if disable_amp:
loss.backward()
optimizer.step()
else:
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = (
hasattr(optimizer, "is_second_order") and
optimizer.is_second_order
)
loss_scaler(
loss,
optimizer,
clip_grad=max_norm,
parameters=model.parameters(),
create_graph=is_second_order,
)
torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, disable_amp):
"""evaluation function."""
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = "Test:"
# switch to evaluation mode
model.eval()
for images, target in metric_logger.log_every(data_loader, 10, header):
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
if disable_amp:
output = model(images)
loss = criterion(output, target)
else:
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}