-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathword2vec.lua
286 lines (270 loc) · 9.62 KB
/
word2vec.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
--[[
Class for word2vec with skipgram and negative sampling
--]]
require("sys")
require("nn")
local Word2Vec = torch.class("Word2Vec")
function Word2Vec:__init(config)
self.tensortype = torch.getdefaulttensortype()
self.gpu = config.gpu -- 1 if train on gpu, otherwise cpu
self.stream = config.stream -- 1 if stream from hard drive, 0 otherwise
self.neg_samples = config.neg_samples
self.minfreq = config.minfreq
self.dim = config.dim
self.criterion = nn.BCECriterion() -- logistic loss
self.word = torch.IntTensor(1)
self.contexts = torch.IntTensor(1+self.neg_samples)
self.labels = torch.zeros(1+self.neg_samples); self.labels[1] = 1 -- first label is always pos sample
self.window = config.window
self.lr = config.lr
self.min_lr = config.min_lr
self.alpha = config.alpha
self.table_size = config.table_size
self.vocab = {}
self.index2word = {}
self.word2index = {}
self.total_count = 0
end
-- move to cuda
function Word2Vec:cuda()
require("cunn")
require("cutorch")
cutorch.setDevice(1)
self.word = self.word:cuda()
self.contexts = self.contexts:cuda()
self.labels = self.labels:cuda()
self.criterion:cuda()
self.w2v:cuda()
end
-- Build vocab frequency, word2index, and index2word from input file
function Word2Vec:build_vocab(corpus)
print("Building vocabulary...")
local start = sys.clock()
local f = io.open(corpus, "r")
local n = 1
for line in f:lines() do
for _, word in ipairs(self:split(line)) do
self.total_count = self.total_count + 1
if self.vocab[word] == nil then
self.vocab[word] = 1
else
self.vocab[word] = self.vocab[word] + 1
end
end
n = n + 1
end
f:close()
-- Delete words that do not meet the minfreq threshold and create word indices
for word, count in pairs(self.vocab) do
if count >= self.minfreq then
self.index2word[#self.index2word+1] = word
self.word2index[word] = #self.index2word
else
self.vocab[word] = nil
end
end
self.vocab_size = #self.index2word
print(string.format("%d words and %d sentences processed in %.2f seconds.", self.total_count, n, sys.clock() - start))
print(string.format("Vocab size after eliminating words occuring less than %d times: %d", self.minfreq, self.vocab_size))
-- initialize word/context embeddings now that vocab size is known
self.word_vecs = nn.LookupTable(self.vocab_size, self.dim) -- word embeddings
self.context_vecs = nn.LookupTable(self.vocab_size, self.dim) -- context embeddings
self.word_vecs:reset(0.25); self.context_vecs:reset(0.25) -- rescale N(0,1)
self.w2v = nn.Sequential()
self.w2v:add(nn.ParallelTable())
self.w2v.modules[1]:add(self.context_vecs)
self.w2v.modules[1]:add(self.word_vecs)
self.w2v:add(nn.MM(false, true)) -- dot prod and sigmoid to get probabilities
self.w2v:add(nn.Sigmoid())
self.decay = (self.min_lr-self.lr)/(self.total_count*self.window)
end
-- Build a table of unigram frequencies from which to obtain negative samples
function Word2Vec:build_table()
local start = sys.clock()
local total_count_pow = 0
print("Building a table of unigram frequencies... ")
for _, count in pairs(self.vocab) do
total_count_pow = total_count_pow + count^self.alpha
end
self.table = torch.IntTensor(self.table_size)
local word_index = 1
local word_prob = self.vocab[self.index2word[word_index]]^self.alpha / total_count_pow
for idx = 1, self.table_size do
self.table[idx] = word_index
if idx / self.table_size > word_prob then
word_index = word_index + 1
word_prob = word_prob + self.vocab[self.index2word[word_index]]^self.alpha / total_count_pow
end
if word_index > self.vocab_size then
word_index = word_index - 1
end
end
print(string.format("Done in %.2f seconds.", sys.clock() - start))
end
-- Train on word context pairs
function Word2Vec:train_pair(word, contexts)
local p = self.w2v:forward({contexts, word})
local loss = self.criterion:forward(p, self.labels)
local dl_dp = self.criterion:backward(p, self.labels)
self.w2v:zeroGradParameters()
self.w2v:backward({contexts, word}, dl_dp)
self.w2v:updateParameters(self.lr)
end
-- Sample negative contexts
function Word2Vec:sample_contexts(context)
self.contexts[1] = context
local i = 0
while i < self.neg_samples do
neg_context = self.table[torch.random(self.table_size)]
if context ~= neg_context then
self.contexts[i+2] = neg_context
i = i + 1
end
end
end
-- Train on sentences that are streamed from the hard drive
-- Check train_mem function to train from memory (after pre-loading data into tensor)
function Word2Vec:train_stream(corpus)
print("Training...")
local start = sys.clock()
local c = 0
f = io.open(corpus, "r")
for line in f:lines() do
sentence = self:split(line)
for i, word in ipairs(sentence) do
word_idx = self.word2index[word]
if word_idx ~= nil then -- word exists in vocab
local reduced_window = torch.random(self.window) -- pick random window size
self.word[1] = word_idx -- update current word
for j = i - reduced_window, i + reduced_window do -- loop through contexts
local context = sentence[j]
if context ~= nil and j ~= i then -- possible context
context_idx = self.word2index[context]
if context_idx ~= nil then -- valid context
self:sample_contexts(context_idx) -- update pos/neg contexts
self:train_pair(self.word, self.contexts) -- train word context pair
c = c + 1
self.lr = math.max(self.min_lr, self.lr + self.decay)
if c % 100000 ==0 then
print(string.format("%d words trained in %.2f seconds. Learning rate: %.4f", c, sys.clock() - start, self.lr))
end
end
end
end
end
end
end
end
-- Row-normalize a matrix
function Word2Vec:normalize(m)
m_norm = torch.zeros(m:size())
for i = 1, m:size(1) do
m_norm[i] = m[i] / torch.norm(m[i])
end
return m_norm
end
-- Return the k-nearest words to a word or a vector based on cosine similarity
-- w can be a string such as "king" or a vector for ("king" - "queen" + "man")
function Word2Vec:get_sim_words(w, k)
if self.word_vecs_norm == nil then
self.word_vecs_norm = self:normalize(self.word_vecs.weight:double())
end
if type(w) == "string" then
if self.word2index[w] == nil then
print("'"..w.."' does not exist in vocabulary.")
return nil
else
w = self.word_vecs_norm[self.word2index[w]]
end
end
local sim = torch.mv(self.word_vecs_norm, w)
sim, idx = torch.sort(-sim)
local r = {}
for i = 1, k do
r[i] = {self.index2word[idx[i]], -sim[i]}
end
return r
end
-- print similar words
function Word2Vec:print_sim_words(words, k)
for i = 1, #words do
r = self:get_sim_words(words[i], k)
if r ~= nil then
print("-------"..words[i].."-------")
for j = 1, k do
print(string.format("%s, %.4f", r[j][1], r[j][2]))
end
end
end
end
-- split on separator
function Word2Vec:split(input, sep)
if sep == nil then
sep = "%s"
end
local t = {}; local i = 1
for str in string.gmatch(input, "([^"..sep.."]+)") do
t[i] = str; i = i + 1
end
return t
end
-- pre-load data as a torch tensor instead of streaming it. this requires a lot of memory,
-- so if the corpus is huge you should partition into smaller sets
function Word2Vec:preload_data(corpus)
print("Preloading training corpus into tensors (Warning: this takes a lot of memory)")
local start = sys.clock()
local c = 0
f = io.open(corpus, "r")
self.train_words = {}; self.train_contexts = {}
for line in f:lines() do
sentence = self:split(line)
for i, word in ipairs(sentence) do
word_idx = self.word2index[word]
if word_idx ~= nil then -- word exists in vocab
local reduced_window = torch.random(self.window) -- pick random window size
self.word[1] = word_idx -- update current word
for j = i - reduced_window, i + reduced_window do -- loop through contexts
local context = sentence[j]
if context ~= nil and j ~= i then -- possible context
context_idx = self.word2index[context]
if context_idx ~= nil then -- valid context
c = c + 1
self:sample_contexts(context_idx) -- update pos/neg contexts
if self.gpu==1 then
self.train_words[c] = self.word:clone():cuda()
self.train_contexts[c] = self.contexts:clone():cuda()
else
self.train_words[c] = self.word:clone()
self.train_contexts[c] = self.contexts:clone()
end
end
end
end
end
end
end
print(string.format("%d word-contexts processed in %.2f seconds", c, sys.clock() - start))
end
-- train from memory. this is needed to speed up GPU training
function Word2Vec:train_mem()
local start = sys.clock()
for i = 1, #self.train_words do
self:train_pair(self.train_words[i], self.train_contexts[i])
self.lr = math.max(self.min_lr, self.lr + self.decay)
if i%100000==0 then
print(string.format("%d words trained in %.2f seconds. Learning rate: %.4f", i, sys.clock() - start, self.lr))
end
end
end
-- train the model using config parameters
function Word2Vec:train_model(corpus)
if self.gpu==1 then
self:cuda()
end
if self.stream==1 then
self:train_stream(corpus)
else
self:preload_data(corpus)
self:train_mem()
end
end