-
Notifications
You must be signed in to change notification settings - Fork 13
/
dreambooth_musicgen.py
1207 lines (1058 loc) · 45.1 KB
/
dreambooth_musicgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning MusicGen for text-to-music using 🤗 Transformers Seq2SeqTrainer"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union
import datasets
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForTextToWaveform,
AutoModel,
AutoProcessor,
HfArgumentParser,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from transformers.integrations import is_wandb_available
from multiprocess import set_start_method
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.40.0.dev0")
require_version("datasets>=2.12.0")
logger = logging.getLogger(__name__)
def list_field(default=None, metadata=None):
return field(default_factory=lambda: default, metadata=metadata)
#### ARGUMENTS
class MusicgenTrainer(Seq2SeqTrainer):
def _pad_tensors_to_max_len(self, tensor, max_length):
if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
# If PAD token is not defined at least EOS token has to be defined
pad_token_id = (
self.tokenizer.pad_token_id
if self.tokenizer.pad_token_id is not None
else self.tokenizer.eos_token_id
)
else:
if self.model.config.pad_token_id is not None:
pad_token_id = self.model.config.pad_token_id
else:
raise ValueError(
"Pad_token_id must be set in the configuration of the model, in order to pad tensors"
)
padded_tensor = pad_token_id * torch.ones(
(tensor.shape[0], max_length, tensor.shape[2]),
dtype=tensor.dtype,
device=tensor.device,
)
length = min(max_length, tensor.shape[1])
padded_tensor[:, :length] = tensor[:, :length]
return padded_tensor
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={
"help": "Path to pretrained model or model identifier from huggingface.co/models"
}
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
processor_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained processor name or path if not the same as model_name"
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Where to store the pretrained models downloaded from huggingface.co"
},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
},
)
model_revision: str = field(
default="main",
metadata={
"help": "The specific model version to use (can be a branch name, tag name or commit id)."
},
)
pad_token_id: int = field(
default=None,
metadata={"help": "If specified, change the model pad token id."},
)
decoder_start_token_id: int = field(
default=None,
metadata={"help": "If specified, change the model decoder start token id."},
)
freeze_text_encoder: bool = field(
default=True,
metadata={"help": "Whether to freeze the text encoder."},
)
clap_model_name_or_path: str = field(
default="laion/larger_clap_music_and_speech",
metadata={
"help": "Used to compute audio similarity during evaluation. Path to pretrained model or model identifier from huggingface.co/models"
},
)
use_lora: bool = field(
default=False,
metadata={"help": "Whether to use Lora."},
)
guidance_scale: float = field(
default=None,
metadata={"help": "If specified, change the model guidance scale."},
)
@dataclass
class DataSeq2SeqTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line.
"""
dataset_name: str = field(
metadata={
"help": "The configuration name of the dataset to use (via the datasets library)."
}
)
dataset_config_name: str = field(
default=None,
metadata={
"help": "The configuration name of the dataset to use (via the datasets library)."
},
)
train_split_name: str = field(
default="train+validation",
metadata={
"help": (
"The name of the training data set split to use (via the datasets library). Defaults to "
"'train+validation'"
)
},
)
eval_split_name: str = field(
default="test",
metadata={
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
},
)
target_audio_column_name: str = field(
default="audio",
metadata={
"help": "The name of the dataset column containing the target audio data. Defaults to 'audio'"
},
)
text_column_name: str = field(
default=None,
metadata={
"help": "If set, the name of the description column containing the text data. If not, you should set `add_metadata` to True, to automatically generates music descriptions ."
},
)
instance_prompt: str = field(
default=None,
metadata={
"help": "If set and `add_metadata=True`, will add the instance prompt to the music description. For example, if you set this to `punk`, `punk` will be added to the descriptions. This allows to use this instance prompt as an anchor for your model to learn to associate it to the specificities of your dataset."
},
)
conditional_audio_column_name: str = field(
default=None,
metadata={
"help": "If set, the name of the dataset column containing conditional audio data. This is entirely optional and only used for conditional guided generation."
},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached preprocessed datasets or not."},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
},
)
max_duration_in_seconds: float = field(
default=30.0,
metadata={
"help": (
"Filter audio files that are longer than `max_duration_in_seconds` seconds to"
" 'max_duration_in_seconds`"
)
},
)
min_duration_in_seconds: float = field(
default=0.0,
metadata={
"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"
},
)
full_generation_sample_text: str = field(
default="80s blues track.",
metadata={
"help": (
"This prompt will be used during evaluation as an additional generated sample."
)
},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
)
},
)
add_audio_samples_to_wandb: bool = field(
default=False,
metadata={
"help": "If set and if `wandb` in args.report_to, will add generated audio samples to wandb logs."
"Generates audio at the beginning and the end of the training to show evolution."
},
)
add_metadata: bool = field(
default=False,
metadata={
"help": (
"If `True`, automatically generates song descriptions, using librosa and msclap."
"Don't forget to install these libraries: `pip install msclap librosa`"
)
},
)
push_metadata_repo_id: str = field(
default=None,
metadata={
"help": (
"if specified and `add_metada=True`, will push the enriched dataset to the hub. Useful if you want to compute it only once."
)
},
)
num_samples_to_generate: int = field(
default=4,
metadata={
"help": (
"If logging with `wandb`, indicates the number of samples from the test set to generate"
)
},
)
audio_separation: bool = field(
default=False,
metadata={"help": ("If set, performs audio separation using demucs.")},
)
audio_separation_batch_size: int = field(
default=10,
metadata={
"help": (
"If `audio_separation`, indicates the batch size passed to demucs."
)
},
)
@dataclass
class DataCollatorMusicGenWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor (:class:`~transformers.AutoProcessor`)
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
"""
processor: AutoProcessor
padding: Union[bool, str] = "longest"
feature_extractor_input_name: Optional[str] = "input_values"
def __call__(
self, features: List[Dict[str, Union[List[int], torch.Tensor]]]
) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
labels = [
torch.tensor(feature["labels"]).transpose(0, 1) for feature in features
]
# (bsz, seq_len, num_codebooks)
labels = torch.nn.utils.rnn.pad_sequence(
labels, batch_first=True, padding_value=-100
)
input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
input_ids = self.processor.tokenizer.pad(input_ids, return_tensors="pt")
batch = {"labels": labels, **input_ids}
if self.feature_extractor_input_name in features[0]:
input_values = [
{
self.feature_extractor_input_name: feature[
self.feature_extractor_input_name
]
}
for feature in features
]
input_values = self.processor.feature_extractor.pad(
input_values, return_tensors="pt"
)
batch[self.feature_extractor_input_name : input_values]
return batch
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser(
(ModelArguments, DataSeq2SeqTrainingArguments, Seq2SeqTrainingArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_musicgen_melody", model_args, data_args)
# Detecting last checkpoint.
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(
logging.INFO if is_main_process(training_args.local_rank) else logging.WARN
)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# 1. First, let's load the dataset
raw_datasets = DatasetDict()
num_workers = data_args.preprocessing_num_workers
add_metadata = data_args.add_metadata
if add_metadata and data_args.text_column_name:
raise ValueError(
"add_metadata and text_column_name are both True, chose the former if you want automatically generated music descriptions or the latter if you want to use your own set of descriptions."
)
if training_args.do_train:
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.train_split_name,
num_proc=num_workers,
)
if data_args.target_audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--target_audio_column_name '{data_args.target_audio_column_name}' not found in dataset '{data_args.dataset_name}'."
" Make sure to set `--target_audio_column_name` to the correct audio column - one of"
f" {', '.join(raw_datasets['train'].column_names)}."
)
if data_args.instance_prompt is not None:
logger.warning(
f"Using the following instance prompt: {data_args.instance_prompt}"
)
elif data_args.text_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--text_column_name` to the correct text column - one of "
f"{', '.join(raw_datasets['train'].column_names)}."
)
elif data_args.text_column_name is None and data_args.instance_prompt is None:
raise ValueError("--instance_prompt or --text_column_name must be set.")
if data_args.max_train_samples is not None:
raw_datasets["train"] = (
raw_datasets["train"]
.shuffle()
.select(range(data_args.max_train_samples))
)
if training_args.do_eval:
raw_datasets["eval"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.eval_split_name,
num_proc=num_workers,
)
if data_args.max_eval_samples is not None:
raw_datasets["eval"] = raw_datasets["eval"].select(
range(data_args.max_eval_samples)
)
if data_args.audio_separation:
try:
from demucs import pretrained
except ImportError:
print(
"To perform audio separation, you should install additional packages, run: `pip install -e .[metadata]]` or `pip install demucs`."
)
from demucs.apply import apply_model
from demucs.audio import convert_audio
from datasets import Audio
demucs = pretrained.get_model("htdemucs")
if torch.cuda.device_count() > 0:
demucs.to("cuda:0")
audio_column_name = data_args.target_audio_column_name
def wrap_audio(audio, sr):
return {"array": audio.cpu().numpy(), "sampling_rate": sr}
def filter_stems(batch, rank=None):
device = "cpu" if torch.cuda.device_count() == 0 else "cuda:0"
if rank is not None:
# move the model to the right GPU if not there already
device = f"cuda:{(rank or 0)% torch.cuda.device_count()}"
# move to device and create pipeline here because the pipeline moves to the first GPU it finds anyway
demucs.to(device)
if isinstance(batch[audio_column_name], list):
wavs = [
convert_audio(
torch.tensor(audio["array"][None], device=device).to(
torch.float32
),
audio["sampling_rate"],
demucs.samplerate,
demucs.audio_channels,
).T
for audio in batch["audio"]
]
wavs_length = [audio.shape[0] for audio in wavs]
wavs = torch.nn.utils.rnn.pad_sequence(
wavs, batch_first=True, padding_value=0.0
).transpose(1, 2)
stems = apply_model(demucs, wavs)
batch[audio_column_name] = [
wrap_audio(s[:-1, :, :length].sum(0).mean(0), demucs.samplerate)
for (s, length) in zip(stems, wavs_length)
]
else:
audio = torch.tensor(
batch[audio_column_name]["array"].squeeze(), device=device
).to(torch.float32)
sample_rate = batch[audio_column_name]["sampling_rate"]
audio = convert_audio(
audio, sample_rate, demucs.samplerate, demucs.audio_channels
)
stems = apply_model(demucs, audio[None])
batch[audio_column_name] = wrap_audio(
stems[0, :-1].mean(0), demucs.samplerate
)
return batch
num_proc = (
torch.cuda.device_count() if torch.cuda.device_count() >= 1 else num_workers
)
raw_datasets = raw_datasets.map(
filter_stems,
batched=True,
batch_size=data_args.audio_separation_batch_size,
with_rank=True,
num_proc=num_proc,
)
raw_datasets = raw_datasets.cast_column(audio_column_name, Audio())
del demucs
if add_metadata:
try:
from msclap import CLAP
import librosa
except ImportError:
print(
"To add metadata, you should install additional packages, run: `pip install -e .[metadata]]"
)
from utils import instrument_classes, genre_labels, mood_theme_classes
import tempfile
import torchaudio
import random
clap_model = CLAP(version="2023", use_cuda=False)
instrument_embeddings = clap_model.get_text_embeddings(instrument_classes)
genre_embeddings = clap_model.get_text_embeddings(genre_labels)
mood_embeddings = clap_model.get_text_embeddings(mood_theme_classes)
def enrich_text(batch):
audio, sampling_rate = (
batch["audio"]["array"],
batch["audio"]["sampling_rate"],
)
tempo, _ = librosa.beat.beat_track(y=audio, sr=sampling_rate)
tempo = f"{str(round(tempo))} bpm" # not usually accurate lol
chroma = librosa.feature.chroma_stft(y=audio, sr=sampling_rate)
key = np.argmax(np.sum(chroma, axis=1))
key = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"][key]
with tempfile.TemporaryDirectory() as tempdir:
path = os.path.join(tempdir, "tmp.wav")
torchaudio.save(path, torch.tensor(audio).unsqueeze(0), sampling_rate)
audio_embeddings = clap_model.get_audio_embeddings([path])
instrument = clap_model.compute_similarity(
audio_embeddings, instrument_embeddings
).argmax(dim=1)[0]
genre = clap_model.compute_similarity(
audio_embeddings, genre_embeddings
).argmax(dim=1)[0]
mood = clap_model.compute_similarity(
audio_embeddings, mood_embeddings
).argmax(dim=1)[0]
instrument = instrument_classes[instrument]
genre = genre_labels[genre]
mood = mood_theme_classes[mood]
metadata = [key, tempo, instrument, genre, mood]
random.shuffle(metadata)
batch["metadata"] = ", ".join(metadata)
return batch
raw_datasets = raw_datasets.map(
enrich_text,
num_proc=1 if torch.cuda.device_count() > 0 else num_workers,
desc="add metadata",
)
del clap_model, instrument_embeddings, genre_embeddings, mood_embeddings
if data_args.push_metadata_repo_id:
raw_datasets.push_to_hub(data_args.push_metadata_repo_id)
# 3. Next, let's load the config as we might need it to create
# load config
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
revision=model_args.model_revision,
)
# update pad token id and decoder_start_token_id
config.update(
{
"pad_token_id": model_args.pad_token_id
if model_args.pad_token_id is not None
else model.config.pad_token_id,
"decoder_start_token_id": model_args.decoder_start_token_id
if model_args.decoder_start_token_id is not None
else model.config.decoder_start_token_id,
}
)
config.decoder.update(
{
"pad_token_id": model_args.pad_token_id
if model_args.pad_token_id is not None
else model.config.decoder.pad_token_id,
"decoder_start_token_id": model_args.decoder_start_token_id
if model_args.decoder_start_token_id is not None
else model.config.decoder.decoder_start_token_id,
}
)
# 4. Now we can instantiate the processor and model
# Note for distributed training, the .from_pretrained methods guarantee that only
# one local process can concurrently download model & vocab.
# load processor
processor = AutoProcessor.from_pretrained(
model_args.processor_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
)
instance_prompt = data_args.instance_prompt
instance_prompt_tokenized = None
full_generation_sample_text = data_args.full_generation_sample_text
if data_args.instance_prompt is not None:
instance_prompt_tokenized = processor.tokenizer(instance_prompt)
if full_generation_sample_text is not None:
full_generation_sample_text = processor.tokenizer(
full_generation_sample_text, return_tensors="pt"
)
# create model
model = AutoModelForTextToWaveform.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
config=config,
token=data_args.token,
trust_remote_code=data_args.trust_remote_code,
revision=model_args.model_revision,
)
# take audio_encoder_feature_extractor
audio_encoder_feature_extractor = AutoFeatureExtractor.from_pretrained(
model.config.audio_encoder._name_or_path,
)
# 5. Now we preprocess the datasets including loading the audio, resampling and normalization
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
# so that we just need to set the correct target sampling rate and normalize the input
# via the `feature_extractor`
# resample target audio
dataset_sampling_rate = (
next(iter(raw_datasets.values()))
.features[data_args.target_audio_column_name]
.sampling_rate
)
if dataset_sampling_rate != audio_encoder_feature_extractor.sampling_rate:
raw_datasets = raw_datasets.cast_column(
data_args.target_audio_column_name,
datasets.features.Audio(
sampling_rate=audio_encoder_feature_extractor.sampling_rate
),
)
if data_args.conditional_audio_column_name is not None:
dataset_sampling_rate = (
next(iter(raw_datasets.values()))
.features[data_args.conditional_audio_column_name]
.sampling_rate
)
if dataset_sampling_rate != processor.feature_extractor.sampling_rate:
raw_datasets = raw_datasets.cast_column(
data_args.conditional_audio_column_name,
datasets.features.Audio(
sampling_rate=processor.feature_extractor.sampling_rate
),
)
# derive max & min input length for sample rate & max duration
max_target_length = (
data_args.max_duration_in_seconds
* audio_encoder_feature_extractor.sampling_rate
)
min_target_length = (
data_args.min_duration_in_seconds
* audio_encoder_feature_extractor.sampling_rate
)
target_audio_column_name = data_args.target_audio_column_name
conditional_audio_column_name = data_args.conditional_audio_column_name
text_column_name = data_args.text_column_name
feature_extractor_input_name = processor.feature_extractor.model_input_names[0]
audio_encoder_pad_token_id = config.decoder.pad_token_id
num_codebooks = model.decoder.config.num_codebooks
if data_args.instance_prompt is not None:
with training_args.main_process_first(desc="instance_prompt preprocessing"):
# compute text embeddings on one process since it's only a forward pass
# do it on CPU for simplicity
instance_prompt_tokenized = instance_prompt_tokenized["input_ids"]
# Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
def prepare_audio_features(batch):
# load audio
if conditional_audio_column_name is not None:
sample = batch[conditional_audio_column_name]
inputs = processor.feature_extractor(
sample["array"], sampling_rate=sample["sampling_rate"]
)
batch[feature_extractor_input_name] = getattr(
inputs, feature_extractor_input_name
)[0]
if text_column_name is not None:
text = batch[text_column_name]
batch["input_ids"] = processor.tokenizer(text)["input_ids"]
elif add_metadata is not None and "metadata" in batch:
metadata = batch["metadata"]
if instance_prompt is not None and instance_prompt != "":
metadata = f"{instance_prompt}, {metadata}"
batch["input_ids"] = processor.tokenizer(metadata)["input_ids"]
else:
batch["input_ids"] = instance_prompt_tokenized
# load audio
target_sample = batch[target_audio_column_name]
labels = audio_encoder_feature_extractor(
target_sample["array"], sampling_rate=target_sample["sampling_rate"]
)
batch["labels"] = labels["input_values"]
# take length of raw audio waveform
batch["target_length"] = len(target_sample["array"].squeeze())
return batch
with training_args.main_process_first(desc="dataset map preprocessing"):
vectorized_datasets = raw_datasets.map(
prepare_audio_features,
remove_columns=next(iter(raw_datasets.values())).column_names,
num_proc=num_workers,
desc="preprocess datasets",
)
def is_audio_in_length_range(length):
return length > min_target_length and length < max_target_length
# filter data that is shorter than min_target_length
vectorized_datasets = vectorized_datasets.filter(
is_audio_in_length_range,
num_proc=num_workers,
input_columns=["target_length"],
)
audio_decoder = model.audio_encoder
pad_labels = torch.ones((1, 1, num_codebooks, 1)) * audio_encoder_pad_token_id
if torch.cuda.device_count() == 1:
audio_decoder.to("cuda")
def apply_audio_decoder(batch, rank=None):
if rank is not None:
# move the model to the right GPU if not there already
device = f"cuda:{(rank or 0)% torch.cuda.device_count()}"
audio_decoder.to(device)
with torch.no_grad():
labels = audio_decoder.encode(
torch.tensor(batch["labels"]).to(audio_decoder.device)
)["audio_codes"]
# add pad token column
labels = torch.cat(
[pad_labels.to(labels.device).to(labels.dtype), labels], dim=-1
)
labels, delay_pattern_mask = model.decoder.build_delay_pattern_mask(
labels.squeeze(0),
audio_encoder_pad_token_id,
labels.shape[-1] + num_codebooks,
)
labels = model.decoder.apply_delay_pattern_mask(labels, delay_pattern_mask)
# the first timestamp is associated to a row full of BOS, let's get rid of it
batch["labels"] = labels[:, 1:].cpu()
return batch
with training_args.main_process_first(desc="audio target preprocessing"):
# Encodec doesn't truely support batching
# Pass samples one by one to the GPU
vectorized_datasets = vectorized_datasets.map(
apply_audio_decoder,
with_rank=True,
num_proc=torch.cuda.device_count()
if torch.cuda.device_count() > 0
else num_workers,
desc="Apply encodec",
)
if data_args.add_audio_samples_to_wandb and "wandb" in training_args.report_to:
if is_wandb_available():
from transformers.integrations import WandbCallback
else:
raise ValueError(
"`args.add_audio_samples_to_wandb=True` and `wandb` in `report_to` but wandb is not installed. See https://docs.wandb.ai/quickstart to install."
)
# 6. Next, we can prepare the training.
# Let's use word CLAP similary as our evaluation metric,
# instantiate a data collator and the trainer
# Define evaluation metrics during training, *i.e.* CLAP similarity
clap = AutoModel.from_pretrained(model_args.clap_model_name_or_path)
clap_processor = AutoProcessor.from_pretrained(model_args.clap_model_name_or_path)
def clap_similarity(texts, audios):
clap_inputs = clap_processor(
text=texts, audios=audios.squeeze(1), padding=True, return_tensors="pt"
)
text_features = clap.get_text_features(
clap_inputs["input_ids"],
attention_mask=clap_inputs.get("attention_mask", None),
)
audio_features = clap.get_audio_features(clap_inputs["input_features"])
cosine_sim = torch.nn.functional.cosine_similarity(
audio_features, text_features, dim=1, eps=1e-8
)
return cosine_sim.mean()
eval_metrics = {"clap": clap_similarity}
def compute_metrics(pred):
input_ids = pred.inputs
input_ids[input_ids == -100] = processor.tokenizer.pad_token_id
texts = processor.tokenizer.batch_decode(input_ids, skip_special_tokens=True)
audios = pred.predictions
results = {key: metric(texts, audios) for (key, metric) in eval_metrics.items()}
return results
# Now save everything to be able to create a single processor later
# make sure all processes wait until data is saved
with training_args.main_process_first():
# only the main process saves them
if is_main_process(training_args.local_rank):
# save feature extractor, tokenizer and config
processor.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
# Instantiate custom data collator
data_collator = DataCollatorMusicGenWithPadding(
processor=processor,
feature_extractor_input_name=feature_extractor_input_name,
)
# Freeze Encoders
model.freeze_audio_encoder()
if model_args.freeze_text_encoder:
model.freeze_text_encoder()
if model_args.guidance_scale is not None:
model.generation_config.guidance_scale = model_args.guidance_scale
if model_args.use_lora:
from peft import LoraConfig, get_peft_model
# TODO(YL): add modularity here
target_modules = (
[
"enc_to_dec_proj",
"audio_enc_to_dec_proj",
"k_proj",
"v_proj",
"q_proj",
"out_proj",
"fc1",
"fc2",
"lm_heads.0",
]
+ [f"lm_heads.{str(i)}" for i in range(len(model.decoder.lm_heads))]
+ [f"embed_tokens.{str(i)}" for i in range(len(model.decoder.lm_heads))]
)
if not model_args.freeze_text_encoder:
target_modules.extend(["k", "v", "q", "o", "wi", "wo"])
config = LoraConfig(
r=16,
lora_alpha=16,
target_modules=target_modules,
lora_dropout=0.05,
bias="none",
)
model.enable_input_require_grads()
model = get_peft_model(model, config)
model.print_trainable_parameters()
logger.info(f"Modules with Lora: {model.targeted_module_names}")
# Initialize MusicgenTrainer
trainer = MusicgenTrainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
tokenizer=processor,