-
Notifications
You must be signed in to change notification settings - Fork 0
/
bio.bib
208 lines (194 loc) · 25.8 KB
/
bio.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
@misc{stalder_self-supervised_2023,
title = {Self-supervised learning unveils change in urban housing from street-level images},
url = {http://arxiv.org/abs/2309.11354},
abstract = {Cities around the world face a critical shortage of affordable and decent housing. Despite its critical importance for policy, our ability to effectively monitor and track progress in urban housing is limited. Deep learning-based computer vision methods applied to street-level images have been successful in the measurement of socioeconomic and environmental inequalities but did not fully utilize temporal images to track urban change as time-varying labels are often unavailable. We used self-supervised methods to measure change in London using 15 million street images taken between 2008 and 2021. Our novel adaptation of Barlow Twins, Street2Vec, embeds urban structure while being invariant to seasonal and daily changes without manual annotations. It outperformed generic embeddings, successfully identified point-level change in London’s housing supply from street-level images, and distinguished between major and minor change. This capability can provide timely information for urban planning and policy decisions toward more liveable, equitable, and sustainable cities.},
language = {en},
urldate = {2023-11-18},
publisher = {arXiv},
author = {Stalder, Steven and Volpi, Michele and Büttner, Nicolas and Law, Stephen and Harttgen, Kenneth and Suel, Esra},
month = sep,
year = {2023},
note = {arXiv:2309.11354 [cs]},
keywords = {Computer Science - Computer Vision and Pattern Recognition, Computer Science - Machine Learning},
file = {Stalder 等 - 2023 - Self-supervised learning unveils change in urban h.pdf:C\:\\Users\\SBH\\Zotero\\storage\\GJRAWY8Z\\Stalder 等 - 2023 - Self-supervised learning unveils change in urban h.pdf:application/pdf},
}
@misc{noauthor_addressing_nodate,
title = {Addressing data quality in {Airbnb} research {\textbar} {Emerald} {Insight}},
url = {https://www.emerald.com/insight/content/doi/10.1108/IJCHM-10-2022-1207/full/html},
urldate = {2023-12-17},
file = {Addressing data quality in Airbnb research | Emerald Insight:C\:\\Users\\SBH\\Zotero\\storage\\XGWJIYIW\\html.html:text/html},
}
@article{prentice_addressing_2023,
title = {Addressing data quality in {Airbnb} research},
volume = {ahead-of-print},
issn = {0959-6119},
url = {https://doi.org/10.1108/IJCHM-10-2022-1207},
doi = {10.1108/IJCHM-10-2022-1207},
abstract = {Purpose This paper aims to examine the primary supply data sources that have been used for research into the sharing economy, and the advantages and limitations of these sources in the literature. Design/methodology/approach To address the research aims, this study conducted a systematic literature review and content analysis of all relevant articles. Following the review, the methodological sections of the selected papers were examined to identify the characteristics and limitations of all data sources used in the papers. Findings This study revealed several limitations of the use of three major data sources, namely, web scraping with self-made bots, inside Airbnb and AirDNA, for sharing economy research. The review shows that the majority of the selected papers did not acknowledge any limitations, nor did they discuss the quality of the data sources. Research limitations/implications The findings of this paper can serve as guidelines for selecting appropriate data sources for research into the sharing economy and cautions researchers to address the limitations of the data sources used. Originality/value To the best of the authors’ knowledge, this is the first study that explores the advantages and limitations of data sources used in short-term rental market research.},
number = {ahead-of-print},
urldate = {2023-12-17},
journal = {International Journal of Contemporary Hospitality Management},
author = {Prentice, Catherine and Pawlicz, Adam},
month = jan,
year = {2023},
keywords = {Airbnb, AirDNA, Inside Airbnb, Sharing economy, Short-term rental market, Web scraping},
file = {Snapshot:C\:\\Users\\SBH\\Zotero\\storage\\UVV98JTW\\html.html:text/html},
}
@article{van_den_bemt_teaching_2018,
title = {Teaching ethics when working with geocoded data: a novel experiential learning approach},
volume = {42},
issn = {0309-8265},
shorttitle = {Teaching ethics when working with geocoded data},
url = {https://doi.org/10.1080/03098265.2018.1436534},
doi = {10.1080/03098265.2018.1436534},
abstract = {Research ethics are not the favourite subject of most undergraduate geography students. However, in the light of increasing mixed-methods research, as well as research using geocodes, it is necessary to train students in the field of ethics. Experiential learning is an approach to teaching that is potentially suitable for teaching ethics. The aim of this article is to discuss how the experiential learning process in a course on Ethics \& GPS-tracking contributed to the ethical awareness of third-year undergraduate geography students. We conducted a qualitative study in which we held four focus group discussions with two cohorts of students (2016 and 2017). We explored the students’ views on the learning environment in relation to ethics in GPS-based and mixed-methods research. Our findings show how an informal learning environment and collaborative learning in a small group contributed to deep understanding of research ethics. These aspects of the learning environment are tied to an ethical framework that consists of three dimensions: (1) the ethics of collaborative research between staff and students; (2) the ethics of privacy raised by the geo-technology adopted in this research case study; and (3) the ethics of the research process with respect to informed consent and data storage.},
number = {2},
urldate = {2023-12-17},
journal = {Journal of Geography in Higher Education},
author = {van den Bemt, Vera and Doornbos, Julia and Meijering, Louise and Plegt, Marion and Theunissen, Nicky},
month = apr,
year = {2018},
note = {Publisher: Routledge
\_eprint: https://doi.org/10.1080/03098265.2018.1436534},
keywords = {Ethics, experiential learning, GPS tracking, qualitative methods, the Netherlands},
pages = {293--310},
file = {Full Text PDF:C\:\\Users\\SBH\\Zotero\\storage\\DDSRBTJY\\van den Bemt 等 - 2018 - Teaching ethics when working with geocoded data a.pdf:application/pdf},
}
@misc{noauthor_reportdownloadsdatajusticereportpdf_nodate,
title = {report/downloads/{DataJusticeReport}.pdf at gh-pages · datajustice/report},
url = {https://github.com/datajustice/report/blob/gh-pages/downloads/DataJusticeReport.pdf},
abstract = {Recommendations for Data Justice. Contribute to datajustice/report development by creating an account on GitHub.},
language = {en},
urldate = {2023-12-17},
journal = {GitHub},
file = {Snapshot:C\:\\Users\\SBH\\Zotero\\storage\\7KSTZDV5\\DataJusticeReport.html:text/html},
}
@article{hasselbalch_making_2019,
title = {Making sense of data ethics. {The} powers behind the data ethics debate in {European} policymaking},
volume = {8},
issn = {2197-6775},
url = {https://policyreview.info/node/1401},
doi = {10.14763/2019.2.1401},
abstract = {This article offers an analytical investigation of the different actors and forces that mould definitions of “data ethics” in European policy-making. It details how data ethics public policy initiatives took shape in the context of the European General Data Protection reform, and addresses the general uncertainty that exists regarding their role and function. The paper also presents an analytical framework for an action-oriented “data ethics of power” that aims to elucidate the power relations of the ‘Big Data Society’, arguing that we recognise data ethics policy initiatives as open-ended spaces of negotiation among different interest groups that seek to guide the cultural definition of “data ethics”, with complex power relations exercised via cultural positioning.},
language = {en},
number = {2},
urldate = {2023-12-17},
journal = {Internet Policy Review},
author = {Hasselbalch, Gry},
month = jun,
year = {2019},
file = {Hasselbalch - 2019 - Making sense of data ethics. The powers behind the.pdf:C\:\\Users\\SBH\\Zotero\\storage\\3JNQGRA3\\Hasselbalch - 2019 - Making sense of data ethics. The powers behind the.pdf:application/pdf},
}
@article{noauthor__nodate,
title = {Сучасна етика як практична філософія кібербезпеки {\textbar} Сучасний захист інформації},
url = {https://journals.dut.edu.ua/index.php/dataprotect/article/view/2668},
abstract = {Анотація
У статті розглянуто питання моралі та етики у рамках професійного та корпоративного кодексів поведінки у сфері кібербезпеки. Було відзначено, що нові засоби виробництва, цифрові технології, цифровізація інформаційних та комунікативних процесів, побудова е-економіки створили передумови до появи нових сфер виробництва, нових професій та спеціальностей. У таких нових реаліях зростає рівень відповідальності серед працівників, які мають доступ до автоматизованих систем управління, баз даних персональних даних та масивів інформації, коли через низьку культуру виробництва та низький рівень кібергігієни та основи кіберзахисту приводить до втручання кіберзловмисників у роботу критичної інфраструктури, виробничих процесів, а це може спричинити витік чутливої інформації, аварії на об’єктах критичної інфраструктури, системі управління країною (сферою безпеки і оборони), а також витік приватних даних. Для мінімізації наслідків кіберінцидентів необхідно піднімати рівень професійної та корпоративної етики поведінки співробітників через адаптування існуючих кодексів поведінки у контексті безпеки інформації та кібербезпеки. Також запропоновано додати до переліку базових та ключових компетентностей нові, а саме: кібергігієна та кібербезпека. При цьому необхідно передбачити включення до існуючих та розроблення нових освітніх стандартів для нових професій та спеціальностей у сфері безпеки інформації та кібербезпеки набуття нових компетентностей, пов’язаних із кібербезпекою та кіберзахистом.
Ключові слова: базовий рівень компетентностей, мораль, етика, кодекс поведінки, професійна та корпоративна етика, кіберпростір, кіберзагрози, кіберзахист, кібербезпека, сфера безпеки інформації та кібербезпеки.
Перелік посилань1. Державний стандарт базової середньої освіти. [Електронний ресурс] Режим доступу: https://mon.gov.ua/ua/osvita/zagalna-serednya-osvita/nova-ukrayinska-shkola/derzhavnij-standart-bazovoyi-serednoyiosviti (дата звернення 28.10.2022) Назва з екрана.2. ДССЗЗІ розширила кількість професій сфери безпеки інформації та кіберзахисту. [Електронний ресурс] Режим доступу: https://mil.in.ua/uk/news/dsszzi-rozshyryla-kilkist-profesij-sfery-bezpeky-informatsiyi-takiberzahystu/. (дата звернення 19.10.2022) Назва з екрана.3. Каленський А.А. Розвиток професійно-педагогічної етики у майбутніх викладачів спеціальних дисциплін : монографія / Андрій Анатолійович Каленський. 2- ге вид., випр. і доп. Київ: ЦП «Компринт», 2016. 424 с.4. Про деякі питання державних стандартів повної загальної середньої освіти : постанова Кабінету Міністрів України від 30 вересня 2020 р. № 898. [Електронний ресурс] Режим доступу: https://www.kmu.gov.ua/npas/pro-deyaki-pitannya-derzhavnih-standartiv-povnoyi-zagalnoyi-serednoyi-osviti-i300920-898 (дата звернення 29.10.2022) Назва з екрана.5. Словник іншомовних слів. [Електронний ресурс] Режим доступу: https://www.jnsm.com.ua/cgibin/u/book/sis.pl?Qry=\%CA\%EE\%E4\%E5\%EA\%F1(дата звернення 29.10.2022) Назва з екрана.6. Щавінський Ю.В., Щавінська І.Ю. Вплив розвитку інформаційних технологій на інформаційну безпеку держави: психологічний аспект. НАУКОВИЙ ВІСНИК 2 (1)´2012 Львівського державного університету внутрішніх справ. Львів, 2012, С.193-202.},
language = {uk-UA},
urldate = {2023-12-17},
file = {Full Text PDF:C\:\\Users\\SBH\\Zotero\\storage\\3NNPDQHJ\\Сучасна етика як практична філософія кібербезпеки .pdf:application/pdf},
}
@misc{noauthor_sustainability_nodate,
title = {Sustainability {\textbar} {Free} {Full}-{Text} {\textbar} {Key} {Factors} {Affecting} the {Price} of {Airbnb} {Listings}: {A} {Geographically} {Weighted} {Approach}},
url = {https://www.mdpi.com/2071-1050/9/9/1635},
urldate = {2023-12-17},
file = {Sustainability | Free Full-Text | Key Factors Affecting the Price of Airbnb Listings\: A Geographically Weighted Approach:C\:\\Users\\SBH\\Zotero\\storage\\E2GLPC2E\\1635.html:text/html},
}
@article{zhang_key_2017,
title = {Key {Factors} {Affecting} the {Price} of {Airbnb} {Listings}: {A} {Geographically} {Weighted} {Approach}},
volume = {9},
copyright = {http://creativecommons.org/licenses/by/3.0/},
issn = {2071-1050},
shorttitle = {Key {Factors} {Affecting} the {Price} of {Airbnb} {Listings}},
url = {https://www.mdpi.com/2071-1050/9/9/1635},
doi = {10.3390/su9091635},
abstract = {Airbnb has been increasingly gaining popularity since 2008 due to its low prices and direct interactions with the local community. This paper employed a general linear model (GLM) and a geographically weighted regression (GWR) model to identify the key factors affecting Airbnb listing prices using data sets of 794 samples of Airbnb listings of business units in Metro Nashville, Tennessee. The results showed that the GWR model performs better than the GLM in terms of accuracy and affected variable selections. Statistically significant differences varied across regions in Metro Nashville. The coefficients illustrate a decreasing trend while there is an increase in the distance from the listed units to the convention center, which indicates that Airbnb listing prices are more sensitive to the distance from the convention center in the central area than in other areas. These findings can also provide implications for stakeholders such as Airbnb hosts to gain a better understanding of the market situation and formulate a suitable pricing strategy.},
language = {en},
number = {9},
urldate = {2023-12-17},
journal = {Sustainability},
author = {Zhang, Zhihua and Chen, Rachel J. C. and Han, Lee D. and Yang, Lu},
month = sep,
year = {2017},
note = {Number: 9
Publisher: Multidisciplinary Digital Publishing Institute},
keywords = {Airbnb, factors, GWR, price, sharing economy},
pages = {1635},
file = {Full Text PDF:C\:\\Users\\SBH\\Zotero\\storage\\NPAJE2UI\\Zhang 等 - 2017 - Key Factors Affecting the Price of Airbnb Listings.pdf:application/pdf},
}
@article{la_location_2021,
title = {Location of {Airbnb} and hotels: the spatial distribution and relationships},
volume = {77},
issn = {1660-5373},
shorttitle = {Location of {Airbnb} and hotels},
url = {https://doi.org/10.1108/TR-10-2020-0476},
doi = {10.1108/TR-10-2020-0476},
abstract = {Purpose The purpose of this study is to compare the spatial distribution of Airbnb and hotels in London and examine the relationship between demographic, socioeconomic and environmental factors and the supply of these two types of lodging supply. Design/methodology/approach Local information of Airbnb listings in London was collected through Insideairbnb.com. Gathered data were examined using geo-spatial auto-correlation analysis and spatial econometric models. Findings The results indicate that Airbnb predominates in the areas around popular tourist attractions and the peripheral areas of the city, while in the downtown area Airbnb and hotels are in the state of coexistence. The mono-centric model and the agglomeration model could be extended to the context of peer-to-peer accommodation. The location of Airbnb and traditional hotels capitalizes on different factors. Research limitations/implications The study is based on secondary data due to data availability. And, it is based on the case of London, so the findings may not reflect the situation of small cities and rural destinations. Practical implications This study not only gives suggestions for local councils to regulate the location of hotels and Airbnb but also provides professional landlords with reference to choosing Airbnb location. Originality/value This study extends the hotel location theoretical models into the context of Airbnb and sheds lights on the distinction between these two business models in terms of location factors. 爱彼迎和酒店的位置:空间分布和关系 目的 本研究旨在比较伦敦Airbnb和酒店的空间分布, 并探讨人口、社会经济和环境因素与这两类住宿供给的关系。 设计/方法/方法 伦敦Airbnb房源信息通过Insideairbnb.com网站收集, 采用地理空间自相关分析和空间经济计量模型进行分析。 研究发现 结果表明Airbnb主要集中在旅游景点周边和城市周边地区, 在市中心地区, Airbnb与酒店处于共存状态。单中心模型和聚集模型适用于共享住宿情境。Airbnb和传统酒店的空间分布影响因素的重要性存在差异。 独创性 本研究将酒店区位理论模型扩展到Airbnb情境下, 并揭示了这两种商业模式在区位因素方面的区别。 研究局限性 本研究采用二手数据。案例地为伦敦, 因此研究结果可能无法反映小城市和乡村旅游目的地的情况。 实际意义 地方政府应更加重视专业公司的劳动力保障并限制旅游景点周边的短期租赁。 Ubicación de los hoteles y preferencias: distribución espacial y relaciones Propósito El propósito de este estudio es comparar la distribución espacial de Airbnb y los hoteles en Londres y examinar la relación entre los factores demográficos, socioeconómicos y ambientales y la oferta de estos dos tipos de oferta de alojamiento. Diseño/metodología/enfoque La información local de los anuncios de Airbnb en Londres se recopiló a través de Insideairbnb.com. Los datos recopilados se examinaron mediante análisis de autocorrelación geoespacial y modelos econométricos espaciales. Resultados Los resultados indican que Airbnb predomina en las zonas aledañas a los atractivos turísticos populares y las zonas periféricas de la ciudad, mientras que en la zona centro Airbnb y los hoteles se encuentran en estado de convivencia. El modelo monocéntrico y el modelo de aglomeración podrían extenderse al contexto de la acomodación entre pares. La ubicación de Airbnb y los hoteles tradicionales se basa en diferentes factores. Originalidad Este estudio amplía los modelos teóricos de ubicación de hoteles en el contexto de Airbnb y arroja luz sobre la distinción entre estos dos modelos comerciales en términos de factores de ubicación. Limitaciones de la investigación El estudio se basa en datos secundarios debido a la disponibilidad de datos. Y se basa en el caso de Londres, por lo que los hallazgos pueden no reflejar la situación de las ciudades pequeñas y los destinos rurales. Implicaciones practices Los hallazgos sugieren que las autoridades locales deberían prestar más atención a la seguridad laboral de las empresas profesionales y restringir los alquileres a corto plazo alrededor de las atracciones turísticas.},
number = {1},
urldate = {2023-12-17},
journal = {Tourism Review},
author = {La, Liqing and Xu, Feifei and Hu, Mingxing and Xiao, Chengling},
month = jan,
year = {2021},
note = {Publisher: Emerald Publishing Limited},
keywords = {经济, 酒店, 空间分析, 伦敦, Acomodación entre pares, Airbnb, Análisis especial, Economía colaborativa, Hoteles, Hotels, London, Londres, Peer-to-peer accommodation, Sharing economy, Spatial analysis},
pages = {209--224},
file = {Full Text PDF:C\:\\Users\\SBH\\Zotero\\storage\\AFIEF5FV\\La 等 - 2021 - Location of Airbnb and hotels the spatial distrib.pdf:application/pdf},
}
@article{voltes-dorta_drivers_2020,
title = {Drivers of {Airbnb} prices according to property/room type, season and location: {A} regression approach},
volume = {45},
issn = {1447-6770},
shorttitle = {Drivers of {Airbnb} prices according to property/room type, season and location},
url = {https://www.sciencedirect.com/science/article/pii/S1447677020302023},
doi = {10.1016/j.jhtm.2020.08.015},
abstract = {While past studies on Airbnb pricing highlight the importance of room features, host characteristics and location factors, little has been investigated about whether these factors are the same across different property/room types, locations and seasons. To fill that gap, this paper presents a study about the drivers of Airbnb prices in Bristol using ordinary least squares (OLS) and geographically-weighted regression (GWR) methods. The estimated models exhibit sharply different levels of goodness-of-fit, suggesting that the prices of different room types might not be explained by the same set of price factors. The results also uncover statistically significant differences between the price determinants of apartments and house listings and reveal spatial patterns in the price effects. These findings have implications for price setting and the assessment of competition. Future studies should account for potential differences across property/room types, as well as to consider the spatial variability of the estimated coefficients.},
urldate = {2023-12-17},
journal = {Journal of Hospitality and Tourism Management},
author = {Voltes-Dorta, Augusto and Sánchez-Medina, Agustín},
month = dec,
year = {2020},
keywords = {Accommodation pricing, Airbnb, Geographically-weighted regression, Sharing economy},
pages = {266--275},
file = {ScienceDirect Full Text PDF:C\:\\Users\\SBH\\Zotero\\storage\\UE33YHI5\\Voltes-Dorta 和 Sánchez-Medina - 2020 - Drivers of Airbnb prices according to propertyroo.pdf:application/pdf;ScienceDirect Snapshot:C\:\\Users\\SBH\\Zotero\\storage\\K63V3PVD\\S1447677020302023.html:text/html},
}
@inproceedings{ji_analysis_2021,
title = {An {Analysis} of {Branding} {Practices} of {Airbnb}: {Implication} for {Future} {Strategic} {Planning}},
isbn = {978-94-6239-483-4},
shorttitle = {An {Analysis} of {Branding} {Practices} of {Airbnb}},
url = {https://www.atlantis-press.com/proceedings/icemci-21/125965965},
doi = {10.2991/assehr.k.211209.139},
abstract = {The purpose of this study is to analyze Airbnb’s branding strategies and compare them with its competitors to discover Airbnb’s areas of improvement and to come up with ensuing strategic plans. The results will help Airbnb have a better understanding of its position in the market, its force of competition, as well as its ability to expand its market...},
language = {en},
urldate = {2023-12-17},
publisher = {Atlantis Press},
author = {Ji, Yang and Li, Hanwen and Yang, Zihan},
month = dec,
year = {2021},
note = {ISSN: 2352-5428},
pages = {857--861},
file = {Full Text PDF:C\:\\Users\\SBH\\Zotero\\storage\\QV6EKBVU\\Ji 等 - 2021 - An Analysis of Branding Practices of Airbnb Impli.pdf:application/pdf},
}
@article{jacobson_platform-based_nodate,
title = {The {Platform}-{Based} {Branding} {Cycle}},
language = {en},
author = {Jacobson, Camilla and Segebarth, Friedrich},
file = {Jacobson 和 Segebarth - The Platform-Based Branding Cycle.pdf:C\:\\Users\\SBH\\Zotero\\storage\\PNV9JTBH\\Jacobson 和 Segebarth - The Platform-Based Branding Cycle.pdf:application/pdf},
}
@article{mody_airbnb_2018,
title = {Airbnb and the {Hotel} {Industry}: {The} {Past}, {Present}, and {Future} of {Sales}, {Marketing}, {Branding}, and {Revenue} {Management}},
volume = {6},
issn = {2326-0351},
shorttitle = {Airbnb and the {Hotel} {Industry}},
url = {https://www.bu.edu/bhr/2018/10/31/airbnb-and-the-hotel-industry-the-past-present-and-future-of-sales-marketing-branding-and-revenue-management/},
language = {en},
number = {3},
urldate = {2023-12-17},
journal = {Boston Hospitality Review},
author = {Mody, Makarand and Gomez, Monica},
month = oct,
year = {2018},
file = {Full Text PDF:C\:\\Users\\SBH\\Zotero\\storage\\8CSUFJQK\\Mody 和 Gomez - 2018 - Airbnb and the Hotel Industry The Past, Present, .pdf:application/pdf},
}