-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_wavelet.py
90 lines (72 loc) · 3.27 KB
/
train_wavelet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import os
import sys
from collections import OrderedDict
from options.train_options import TrainOptions
import data
import torch
from util.iter_counter import IterationCounter
from util.visualizer import Visualizer
from trainers.wavelet_trainer import WaveletTrainer
from pytorch_wavelets import DWTForward
import torch.nn.functional as F
# parse options
opt = TrainOptions().parse()
# print options to help debugging
print(' '.join(sys.argv))
# load the dataset
dataloader = data.create_dataloader(opt)
# create trainer for our model
trainer = WaveletTrainer(opt)
# create tool for counting iterations
iter_counter = IterationCounter(opt, len(dataloader))
# create tool for visualization
visualizer = Visualizer(opt)
xfm = DWTForward(J=opt.wavelet_decomp_level, mode='zero', wave='haar')
for epoch in iter_counter.training_epochs():
iter_counter.record_epoch_start(epoch)
for i, data_i in enumerate(dataloader, start=iter_counter.epoch_iter):
iter_counter.record_one_iteration()
# Training
# train generator
if i % opt.D_steps_per_G == 0:
trainer.run_generator_one_step(data_i)
# train discriminator
if i % opt.G_steps_per_D == 0:
trainer.run_discriminator_one_step(data_i)
# Visualizations
if iter_counter.needs_printing():
losses = trainer.get_latest_losses()
visualizer.print_current_errors(epoch, iter_counter.epoch_iter,
losses, iter_counter.time_per_iter)
visualizer.plot_current_errors(losses, iter_counter.total_steps_so_far)
if iter_counter.needs_displaying():
Yl, Yh = xfm(data_i['image'][:,:3].cpu())
# print(Yl.shape, Yh[0].shape)
Yl = 2*(Yl - Yl.min()) / (Yl.max() - Yl.min()) - 1.
Yl_pred = trainer.get_latest_generated()[0].cpu()
Yl_pred = 2*(Yl_pred - Yl_pred.min()) / (Yl_pred.max() - Yl_pred.min()) - 1.
combine_image = torch.cat([data_i['masked_img'][:,:3].cpu(),
F.interpolate(Yl_pred, scale_factor=2**opt.wavelet_decomp_level),
F.interpolate(Yl, scale_factor=2**opt.wavelet_decomp_level),
torch.clamp(trainer.get_latest_generated()[-1].cpu(),-1,1),
data_i['image'].cpu()], dim=3)
visual_combine = OrderedDict([('visualization', combine_image[:32])])
visualizer.display_current_results(visual_combine, epoch, iter_counter.total_steps_so_far)
if iter_counter.needs_saving():
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, iter_counter.total_steps_so_far))
trainer.save('latest')
iter_counter.record_current_iter()
trainer.update_learning_rate(epoch)
iter_counter.record_epoch_end()
if epoch % opt.save_epoch_freq == 0 or \
epoch == iter_counter.total_epochs:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, iter_counter.total_steps_so_far))
trainer.save('latest')
trainer.save(epoch)
print('Training was successfully finished.')