-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain.py
109 lines (97 loc) · 5.15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import torch
import torchvision
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import time
from time import gmtime, strftime, clock
from dataset_planematch import *
from network_planematch import *
import util
config = util.get_args()
transformed_dataset = PlanarPatchDataset(csv_file=config.train_csv_path, root_dir=config.train_root_dir,transform=transforms.Compose([ToTensor()]))
dataloader = DataLoader(transformed_dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers)
model = ResNetMI(Bottleneck, [3, 4, 6, 3])
model.cuda(config.gpu)
triplet_loss = nn.TripletMarginLoss(margin=1.0)
learning_rate = config.lr
iteration = 0
if config.save_snapshot:
if not os.path.exists(config.save_path):
os.makedirs(config.save_path)
snapshot_folder = os.path.join(config.save_path, 'snapshots_'+strftime("%Y-%m-%d_%H-%M-%S",gmtime()))
if not os.path.exists(snapshot_folder):
os.makedirs(snapshot_folder)
print('Start training ......')
for epoch in range(config.epochs):
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
for i_batch, sample_batched in enumerate(dataloader):
sample = transformed_dataset[i_batch]
x1 = sample_batched['rgb_global_image1'].float()
x2 = sample_batched['rgb_global_image2'].float()
x3 = sample_batched['rgb_global_image3'].float()
x4 = sample_batched['depth_global_image1'].float()
x5 = sample_batched['depth_global_image2'].float()
x6 = sample_batched['depth_global_image3'].float()
x7 = sample_batched['normal_global_image1'].float()
x8 = sample_batched['normal_global_image2'].float()
x9 = sample_batched['normal_global_image3'].float()
x10 = sample_batched['mask_global_image1'].float()
x11 = sample_batched['mask_global_image2'].float()
x12 = sample_batched['mask_global_image3'].float()
x13 = sample_batched['rgb_local_image1'].float()
x14 = sample_batched['rgb_local_image2'].float()
x15 = sample_batched['rgb_local_image3'].float()
x16 = sample_batched['depth_local_image1'].float()
x17 = sample_batched['depth_local_image2'].float()
x18 = sample_batched['depth_local_image3'].float()
x19 = sample_batched['normal_local_image1'].float()
x20 = sample_batched['normal_local_image2'].float()
x21 = sample_batched['normal_local_image3'].float()
x22 = sample_batched['mask_local_image1'].float()
x23 = sample_batched['mask_local_image2'].float()
x24 = sample_batched['mask_local_image3'].float()
x1 = Variable(x1.cuda(config.gpu), requires_grad=True)
x2 = Variable(x2.cuda(config.gpu), requires_grad=True)
x3 = Variable(x3.cuda(config.gpu), requires_grad=True)
x4 = Variable(x4.cuda(config.gpu), requires_grad=True)
x5 = Variable(x5.cuda(config.gpu), requires_grad=True)
x6 = Variable(x6.cuda(config.gpu), requires_grad=True)
x7 = Variable(x7.cuda(config.gpu), requires_grad=True)
x8 = Variable(x8.cuda(config.gpu), requires_grad=True)
x9 = Variable(x9.cuda(config.gpu), requires_grad=True)
x10 = Variable(x10.cuda(config.gpu), requires_grad=True)
x11 = Variable(x11.cuda(config.gpu), requires_grad=True)
x12 = Variable(x12.cuda(config.gpu), requires_grad=True)
x13 = Variable(x13.cuda(config.gpu), requires_grad=True)
x14 = Variable(x14.cuda(config.gpu), requires_grad=True)
x15 = Variable(x15.cuda(config.gpu), requires_grad=True)
x16 = Variable(x16.cuda(config.gpu), requires_grad=True)
x17 = Variable(x17.cuda(config.gpu), requires_grad=True)
x18 = Variable(x18.cuda(config.gpu), requires_grad=True)
x19 = Variable(x19.cuda(config.gpu), requires_grad=True)
x20 = Variable(x20.cuda(config.gpu), requires_grad=True)
x21 = Variable(x21.cuda(config.gpu), requires_grad=True)
x22 = Variable(x22.cuda(config.gpu), requires_grad=True)
x23 = Variable(x23.cuda(config.gpu), requires_grad=True)
x24 = Variable(x24.cuda(config.gpu), requires_grad=True)
feature1 = model(x1, x4, x7, x10, x13, x16, x19, x22)
feature2 = model(x2, x5, x8, x11, x14, x17, x20, x23)
feature3 = model(x3, x6, x9, x12, x15, x18, x21, x24)
loss = triplet_loss(feature1, feature2, feature3)
loss.data[0] = (loss.data[0]/1)**(config.focal_loss_lambda)
focal_loss = loss.data[0]
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('[%d, %d] lr: %.9f focal_loss: %.16f' %(epoch + 1, i_batch + 1, learning_rate, focal_loss))
if config.save_snapshot and iteration % config.save_snapshot_every == 0 :
print('Saving snapshots of the models ...... ')
torch.save(model, snapshot_folder+'/model'+ str(iteration) + '.pkl')
if iteration % config.lr_decay_every == config.lr_decay_every - 1:
learning_rate = learning_rate * config.lr_decay_by
iteration = iteration + 1
print('Finished..')