-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
454 lines (405 loc) · 17 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import itertools
import os
import random
import shutil
from math import ceil
from typing import Dict, List
import numpy as np
import prettytable as pt
import torch
import torch.nn as nn
from fast_pytorch_kmeans import KMeans
from pathlib import Path
from scipy.stats import hmean
from sklearn import metrics
from termcolor import cprint
from torchvision.utils import draw_segmentation_masks, make_grid, save_image
import utils.misc as misc
from losses import get_spixel_tgt_map, get_volume_seg_map
from utils.convcrf import convcrf
from utils.crf import DenseCRF
def train(
model: nn.Module,
dataloader,
dataset_title: str,
optimizer_dict: Dict,
criterion,
epoch: int,
writer,
suffix: str,
opt,
):
metric_logger = misc.MetricLogger(writer=writer, suffix=suffix)
cprint("{}-th epoch training on {}".format(epoch, dataset_title), "blue")
model.train()
roc_auc_elements = {
modality: {"map_scores": [], "vol_scores": []}
for modality in itertools.chain(opt.modality, ["ensemble"])
}
roc_auc_elements["labels"] = []
for i, data in metric_logger.log_every(
dataloader, print_freq=opt.print_freq, header=f"[{suffix} {epoch}]"
):
if (opt.debug or opt.wholetest) and i > 50:
break
for modality, optimizer in optimizer_dict.items():
optimizer.zero_grad()
image = data["image"].to(opt.device)
unnormalized_image = data["unnormalized_image"].to(opt.device)
label = data["label"].to(opt.device)
mask = data["mask"].to(opt.device)
spixel = data["spixel"].to(opt.device) if opt.mvc_spixel else None
outputs = model(
image,
seg_size=None
if opt.loss_on_mid_map
else [image.shape[-2], image.shape[-1]],
)
losses = criterion(
outputs,
label,
mask,
epoch=epoch,
max_epoch=opt.epochs,
spixel=spixel,
raw_image=unnormalized_image,
)
total_loss = losses["total_loss"]
total_loss.backward()
for modality in opt.modality:
if opt.grad_clip > 0.0:
grad_norm = nn.utils.clip_grad_norm_(
model.sub_models[modality].parameters(), opt.grad_clip
)
metric_logger.update(**{f"grad_norm/{modality}": grad_norm})
optimizer_dict[modality].step()
# image-level metrices logger
roc_auc_elements["labels"].extend(label.tolist())
for modality in itertools.chain(opt.modality, ["ensemble"]):
roc_auc_elements[modality]["map_scores"].extend(
outputs[modality]["map_pred"].tolist()
)
roc_auc_elements[modality]["vol_scores"].extend(
(outputs[modality]["vol_pred"]).tolist()
)
metric_logger.update(**losses)
image_metrics = update_image_roc_auc_metric(
opt.modality + ["ensemble"], roc_auc_elements, None
)
metric_logger.update(**image_metrics)
metric_logger.write_tensorboard(epoch)
print("Average status:")
print(metric_logger.stat_table())
def bundled_evaluate(
model: nn.Module, dataloaders: Dict, criterion, epoch, writer, suffix, opt
):
metric_logger = misc.MetricLogger(writer=writer, suffix=suffix + "_avg")
for dataset, dataloader in dataloaders.items():
outputs = evaluate(
model,
dataloader,
criterion,
dataset,
epoch,
writer,
suffix + f"_{dataset}",
opt,
)
old_keys = list(outputs.keys())
for k in old_keys:
outputs[k.replace(dataset.upper(), "AVG")] = outputs[k]
for k in old_keys:
del outputs[k]
metric_logger.update(**outputs)
metric_logger.write_tensorboard(epoch)
print("Average status:")
print(metric_logger.stat_table())
return metric_logger.get_meters()
def evaluate(
model: nn.Module,
dataloader,
criterion,
dataset_title: str,
epoch: int,
writer,
suffix: str,
opt,
):
metric_logger = misc.MetricLogger(writer=writer, suffix=suffix)
cprint("{}-th epoch evaluation on {}".format(epoch, dataset_title.upper()), "blue")
model.eval()
if opt.crf_postproc:
postprocess = DenseCRF(
iter_max=opt.crf_iter_max,
pos_w=opt.crf_pos_w,
pos_xy_std=opt.crf_pos_xy_std,
bi_w=opt.crf_bi_w,
bi_xy_std=opt.crf_bi_xy_std,
bi_rgb_std=opt.crf_bi_rgb_std,
)
elif opt.convcrf_postproc:
convcrf_config = convcrf.default_conf
convcrf_config["skip_init_softmax"] = True
convcrf_config["final_softmax"] = True
shape = [opt.convcrf_shape, opt.convcrf_shape]
postprocess = convcrf.GaussCRF(
conf=convcrf_config, shape=shape, nclasses=2, use_gpu=True
).to(opt.device)
figure_path = opt.figure_path + f"_{dataset_title.upper()}"
if opt.save_figure:
if os.path.exists(figure_path):
shutil.rmtree(figure_path)
os.mkdir(figure_path)
cprint("Saving figures to {}".format(figure_path), "blue")
if opt.max_pool_postproc > 1:
max_pool = nn.MaxPool2d(
kernel_size=opt.max_pool_postproc,
stride=1,
padding=(opt.max_pool_postproc - 1) // 2,
).to(opt.device)
else:
max_pool = nn.Identity().to(opt.device)
# used_sliding_prediction = False
roc_auc_elements = {
modality: {"map_scores": [], "vol_scores": []}
for modality in itertools.chain(opt.modality, ["ensemble"])
}
roc_auc_elements["labels"] = []
with torch.no_grad():
for i, data in metric_logger.log_every(
dataloader, print_freq=opt.print_freq, header=f"[{suffix} {epoch}]"
):
if (opt.debug or opt.wholetest) and i > 50:
break
image_size = data["image"].shape[-2:]
label = data["label"]
mask = data["mask"]
if opt.crf_postproc or opt.spixel_postproc or opt.convcrf_postproc:
spixel = data["spixel"].to(opt.device)
if max(image_size) > opt.tile_size and opt.large_image_strategy == "slide":
outputs = sliding_predict(
model, data, opt.tile_size, opt.tile_overlap, opt
)
else:
image = data["image"].to(opt.device)
outputs = model(image, seg_size=image.shape[-2:])
if opt.max_pool_postproc > 1:
for modality in itertools.chain(opt.modality, ["ensemble"]):
outputs[modality]["out_map"] = max_pool(
outputs[modality]["out_map"]
)
# CRF
if opt.crf_postproc:
raw_prob = outputs["ensemble"]["out_map"]
image = data["unnormalized_image"] * 255.0
if opt.crf_downsample > 1:
image = (
torch.nn.functional.interpolate(
image,
size=(
image_size[0] // opt.crf_downsample,
image_size[1] // opt.crf_downsample,
),
mode="bilinear",
align_corners=False,
)
.clamp(0, 255)
.int()
)
image = image.squeeze(0).numpy().astype(np.uint8).transpose(1, 2, 0)
for modality in itertools.chain(opt.modality, ["ensemble"]):
prob = outputs[modality]["out_map"].squeeze(1)
if opt.crf_downsample > 1:
prob = (
torch.nn.functional.interpolate(
prob,
size=(
image_size[0] // opt.crf_downsample,
image_size[1] // opt.crf_downsample,
),
mode="bilinear",
align_corners=False,
)
.clamp(0, 1)
.squeeze(0)
)
prob = torch.cat([prob, 1 - prob], dim=0).detach().cpu().numpy()
prob = postprocess(image, prob)
prob = prob[None, 0, ...]
prob = torch.tensor(prob, device=opt.device).unsqueeze(0)
if opt.crf_downsample > 1:
prob = torch.nn.functional.interpolate(
prob, size=image_size, mode="bilinear", align_corners=False
).clamp(0, 1)
outputs[modality]["out_map"] = prob
outputs[modality]["map_pred"] = (
outputs[modality]["out_map"].max().unsqueeze(0)
)
elif opt.convcrf_postproc:
raw_prob = outputs["ensemble"]["out_map"]
image = data["unnormalized_image"].to(opt.device) * 255.0
image = (
torch.nn.functional.interpolate(
image,
size=(opt.convcrf_shape, opt.convcrf_shape),
mode="bilinear",
align_corners=False,
)
.clamp(0, 255)
.int()
)
for modality in itertools.chain(opt.modality, ["ensemble"]):
prob = outputs[modality]["out_map"]
prob = torch.cat([prob, 1 - prob], dim=1)
prob = torch.nn.functional.interpolate(
prob,
size=(opt.convcrf_shape, opt.convcrf_shape),
mode="bilinear",
align_corners=False,
).clamp(0, 1)
prob = postprocess(unary=prob, img=image)
prob = torch.nn.functional.interpolate(
prob, size=image_size, mode="bilinear", align_corners=False
).clamp(0, 1)
outputs[modality]["out_map"] = prob[:, 0, None, ...]
outputs[modality]["map_pred"] = (
outputs[modality]["out_map"].max().unsqueeze(0)
)
elif opt.spixel_postproc:
raw_prob = outputs["ensemble"]["out_map"]
for modality in itertools.chain(opt.modality, ["ensemble"]):
outputs[modality]["out_map"] = get_spixel_tgt_map(
outputs[modality]["out_map"], spixel
)
# image-level metrices logger
roc_auc_elements["labels"].extend(label.detach().cpu().tolist())
for modality in itertools.chain(opt.modality, ["ensemble"]):
roc_auc_elements[modality]["map_scores"].extend(
outputs[modality]["map_pred"].detach().cpu().tolist()
)
roc_auc_elements[modality]["vol_scores"].extend(
(outputs[modality]["vol_pred"]).detach().cpu().tolist()
)
# generate binary prediction mask
out_map = {
modality: outputs[modality]["out_map"] > opt.mask_threshold
for modality in itertools.chain(opt.modality, ["ensemble"])
}
# only compute pixel-level metrics for manipulated images
if label.item() == 1.0:
for modality in itertools.chain(opt.modality, ["ensemble"]):
pixel_metrics = misc.calculate_pixel_f1(
out_map[modality].float().detach().cpu().numpy().flatten(),
mask.detach().cpu().numpy().flatten(),
suffix=f"/{modality}",
)
metric_logger.update(**pixel_metrics)
# save images, mask, and prediction map
if opt.save_figure:
unnormalized_image = data["unnormalized_image"]
# image_id = data['id'][0].split('.')[0]
image_id = Path(data["id"][0]).stem
save_image(
(
outputs["ensemble"]["out_map"][0, ...] > opt.mask_threshold
).float()
* 255,
os.path.join(figure_path, f"{image_id}_ensemble_map.png"),
)
image_metrics = update_image_roc_auc_metric(
opt.modality + ["ensemble"],
roc_auc_elements,
{
modality: metric_logger.meters[f"pixel_f1/{modality}"].avg
for modality in itertools.chain(opt.modality, ["ensemble"])
},
)
metric_logger.update(**image_metrics)
metric_logger.prepend_subprefix(f"{dataset_title.upper()}_")
metric_logger.write_tensorboard(epoch)
print("Average status:")
print(metric_logger.stat_table())
return metric_logger.get_meters()
def update_image_roc_auc_metric(modalities: List, roc_auc_elements, pixel_f1=None):
result = {}
for modality in modalities:
image_metrics = misc.calculate_img_score(
np.array(roc_auc_elements[modality]["map_scores"]) > 0.5,
(np.array(roc_auc_elements["labels"]) > 0).astype(np.int),
suffix=f"/{modality}",
)
if pixel_f1 is not None:
image_f1 = image_metrics[f"image_f1/{modality}"]
combined_f1 = hmean([image_f1, pixel_f1[modality]])
image_metrics[f"comb_f1/{modality}"] = float(combined_f1)
if 0.0 in roc_auc_elements["labels"] and 1.0 in roc_auc_elements["labels"]:
image_auc = metrics.roc_auc_score(
roc_auc_elements["labels"], roc_auc_elements[modality]["map_scores"]
)
image_metrics[f"image_auc/{modality}"] = image_auc
result.update(image_metrics)
return result
def pad_image(image, target_size):
image_size = image.shape[-2:]
if image_size != target_size:
row_missing = target_size[0] - image_size[0]
col_missing = target_size[1] - image_size[1]
image = nn.functional.pad(
image, (0, row_missing, 0, col_missing), "constant", 0
)
return image
def sliding_predict(model: nn.Module, data, tile_size, tile_overlap, opt):
image = data["image"]
mask = data["mask"]
image = image.to(opt.device)
image_size = image.shape[-2:]
stride = ceil(tile_size * (1 - tile_overlap))
tile_rows = int(ceil((image_size[0] - tile_size) / stride) + 1)
tile_cols = int(ceil((image_size[1] - tile_size) / stride) + 1)
result = {}
for modality in itertools.chain(opt.modality, ["ensemble"]):
result[modality] = {
"out_map": torch.zeros_like(
mask, requires_grad=False, dtype=torch.float32, device=opt.device
),
"out_vol_map": torch.zeros_like(
mask, requires_grad=False, dtype=torch.float32, device=opt.device
),
}
map_counter = torch.zeros_like(
mask, requires_grad=False, dtype=torch.float32, device=opt.device
)
with torch.no_grad():
for row in range(tile_rows):
for col in range(tile_cols):
x1 = int(col * stride)
y1 = int(row * stride)
x2 = min(x1 + tile_size, image_size[1])
y2 = min(y1 + tile_size, image_size[0])
x1 = max(int(x2 - tile_size), 0)
y1 = max(int(y2 - tile_size), 0)
image_tile = image[:, :, y1:y2, x1:x2]
image_tile = pad_image(image_tile, [opt.tile_size, opt.tile_size])
tile_outputs = model(image_tile, seg_size=(image_tile.shape[-2:]))
for modality in itertools.chain(opt.modality, ["ensemble"]):
result[modality]["out_map"][:, :, y1:y2, x1:x2] += tile_outputs[
modality
]["out_map"][:, :, : y2 - y1, : x2 - x1]
out_vol_map = get_volume_seg_map(
tile_outputs[modality]["out_vol"],
size=image_tile.shape[-2:],
label=data["label"],
kmeans=KMeans(2) if opt.consistency_kmeans else None,
)[:, :, : y2 - y1, : x2 - x1]
result[modality]["out_vol_map"][:, :, y1:y2, x1:x2] += out_vol_map
map_counter[:, :, y1:y2, x1:x2] += 1
for modality in itertools.chain(opt.modality, ["ensemble"]):
result[modality]["out_map"] /= map_counter
result[modality]["out_vol_map"] /= map_counter
result[modality]["map_pred"] = (
result[modality]["out_map"].max().unsqueeze(0)
)
result[modality]["vol_pred"] = (
result[modality]["out_vol_map"].max().unsqueeze(0)
)
return result