forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatcher.py
executable file
·192 lines (176 loc) · 7.79 KB
/
matcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from ppstructure.table.table_master_match import deal_eb_token, deal_bb
def distance(box_1, box_2):
x1, y1, x2, y2 = box_1
x3, y3, x4, y4 = box_2
dis = abs(x3 - x1) + abs(y3 - y1) + abs(x4 - x2) + abs(y4 - y2)
dis_2 = abs(x3 - x1) + abs(y3 - y1)
dis_3 = abs(x4 - x2) + abs(y4 - y2)
return dis + min(dis_2, dis_3)
def compute_iou(rec1, rec2):
"""
computing IoU
:param rec1: (y0, x0, y1, x1), which reflects
(top, left, bottom, right)
:param rec2: (y0, x0, y1, x1)
:return: scala value of IoU
"""
# computing area of each rectangles
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
# computing the sum_area
sum_area = S_rec1 + S_rec2
# find the each edge of intersect rectangle
left_line = max(rec1[1], rec2[1])
right_line = min(rec1[3], rec2[3])
top_line = max(rec1[0], rec2[0])
bottom_line = min(rec1[2], rec2[2])
# judge if there is an intersect
if left_line >= right_line or top_line >= bottom_line:
return 0.0
else:
intersect = (right_line - left_line) * (bottom_line - top_line)
return (intersect / (sum_area - intersect)) * 1.0
class TableMatch:
def __init__(self, filter_ocr_result=False, use_master=False):
self.filter_ocr_result = filter_ocr_result
self.use_master = use_master
def __call__(self, structure_res, dt_boxes, rec_res):
pred_structures, pred_bboxes = structure_res
if self.filter_ocr_result:
dt_boxes, rec_res = self._filter_ocr_result(pred_bboxes, dt_boxes,
rec_res)
matched_index = self.match_result(dt_boxes, pred_bboxes)
if self.use_master:
pred_html, pred = self.get_pred_html_master(pred_structures,
matched_index, rec_res)
else:
pred_html, pred = self.get_pred_html(pred_structures, matched_index,
rec_res)
return pred_html
def match_result(self, dt_boxes, pred_bboxes):
matched = {}
for i, gt_box in enumerate(dt_boxes):
distances = []
for j, pred_box in enumerate(pred_bboxes):
if len(pred_box) == 8:
pred_box = [
np.min(pred_box[0::2]), np.min(pred_box[1::2]),
np.max(pred_box[0::2]), np.max(pred_box[1::2])
]
distances.append((distance(gt_box, pred_box),
1. - compute_iou(gt_box, pred_box)
)) # compute iou and l1 distance
sorted_distances = distances.copy()
# select det box by iou and l1 distance
sorted_distances = sorted(
sorted_distances, key=lambda item: (item[1], item[0]))
if distances.index(sorted_distances[0]) not in matched.keys():
matched[distances.index(sorted_distances[0])] = [i]
else:
matched[distances.index(sorted_distances[0])].append(i)
return matched
def get_pred_html(self, pred_structures, matched_index, ocr_contents):
end_html = []
td_index = 0
for tag in pred_structures:
if '</td>' in tag:
if '<td></td>' == tag:
end_html.extend('<td>')
if td_index in matched_index.keys():
b_with = False
if '<b>' in ocr_contents[matched_index[td_index][
0]] and len(matched_index[td_index]) > 1:
b_with = True
end_html.extend('<b>')
for i, td_index_index in enumerate(matched_index[td_index]):
content = ocr_contents[td_index_index][0]
if len(matched_index[td_index]) > 1:
if len(content) == 0:
continue
if content[0] == ' ':
content = content[1:]
if '<b>' in content:
content = content[3:]
if '</b>' in content:
content = content[:-4]
if len(content) == 0:
continue
if i != len(matched_index[
td_index]) - 1 and ' ' != content[-1]:
content += ' '
end_html.extend(content)
if b_with:
end_html.extend('</b>')
if '<td></td>' == tag:
end_html.append('</td>')
else:
end_html.append(tag)
td_index += 1
else:
end_html.append(tag)
return ''.join(end_html), end_html
def get_pred_html_master(self, pred_structures, matched_index,
ocr_contents):
end_html = []
td_index = 0
for token in pred_structures:
if '</td>' in token:
txt = ''
b_with = False
if td_index in matched_index.keys():
if '<b>' in ocr_contents[matched_index[td_index][
0]] and len(matched_index[td_index]) > 1:
b_with = True
for i, td_index_index in enumerate(matched_index[td_index]):
content = ocr_contents[td_index_index][0]
if len(matched_index[td_index]) > 1:
if len(content) == 0:
continue
if content[0] == ' ':
content = content[1:]
if '<b>' in content:
content = content[3:]
if '</b>' in content:
content = content[:-4]
if len(content) == 0:
continue
if i != len(matched_index[
td_index]) - 1 and ' ' != content[-1]:
content += ' '
txt += content
if b_with:
txt = '<b>{}</b>'.format(txt)
if '<td></td>' == token:
token = '<td>{}</td>'.format(txt)
else:
token = '{}</td>'.format(txt)
td_index += 1
token = deal_eb_token(token)
end_html.append(token)
html = ''.join(end_html)
html = deal_bb(html)
return html, end_html
def _filter_ocr_result(self, pred_bboxes, dt_boxes, rec_res):
y1 = pred_bboxes[:, 1::2].min()
new_dt_boxes = []
new_rec_res = []
for box, rec in zip(dt_boxes, rec_res):
if np.max(box[1::2]) < y1:
continue
new_dt_boxes.append(box)
new_rec_res.append(rec)
return new_dt_boxes, new_rec_res