forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSLANet.yml
143 lines (136 loc) · 3.63 KB
/
SLANet.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
Global:
use_gpu: true
epoch_num: 100
log_smooth_window: 20
print_batch_step: 20
save_model_dir: ./output/SLANet
save_epoch_step: 400
# evaluation is run every 1000 iterations after the 0th iteration
eval_batch_step: [0, 1000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir: ./output/SLANet/infer
use_visualdl: False
infer_img: ppstructure/docs/table/table.jpg
# for data or label process
character_dict_path: ppocr/utils/dict/table_structure_dict.txt
character_type: en
max_text_length: &max_text_length 500
box_format: &box_format 'xyxy' # 'xywh', 'xyxy', 'xyxyxyxy'
infer_mode: False
use_sync_bn: True
save_res_path: 'output/infer'
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
clip_norm: 5.0
lr:
name: Piecewise
learning_rate: 0.001
decay_epochs : [40, 50]
values : [0.001, 0.0001, 0.00005]
regularizer:
name: 'L2'
factor: 0.00000
Architecture:
model_type: table
algorithm: SLANet
Backbone:
name: PPLCNet
scale: 1.0
pretrained: true
use_ssld: true
Neck:
name: CSPPAN
out_channels: 96
Head:
name: SLAHead
hidden_size: 256
max_text_length: *max_text_length
loc_reg_num: &loc_reg_num 4
Loss:
name: SLALoss
structure_weight: 1.0
loc_weight: 2.0
loc_loss: smooth_l1
PostProcess:
name: TableLabelDecode
merge_no_span_structure: &merge_no_span_structure True
Metric:
name: TableMetric
main_indicator: acc
compute_bbox_metric: False
loc_reg_num: *loc_reg_num
box_format: *box_format
Train:
dataset:
name: PubTabDataSet
data_dir: train_data/table/pubtabnet/train/
label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- TableLabelEncode:
learn_empty_box: False
merge_no_span_structure: *merge_no_span_structure
replace_empty_cell_token: False
loc_reg_num: *loc_reg_num
max_text_length: *max_text_length
- TableBoxEncode:
in_box_format: *box_format
out_box_format: *box_format
- ResizeTableImage:
max_len: 488
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- PaddingTableImage:
size: [488, 488]
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ]
loader:
shuffle: True
batch_size_per_card: 48
drop_last: True
num_workers: 1
Eval:
dataset:
name: PubTabDataSet
data_dir: train_data/table/pubtabnet/val/
label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- TableLabelEncode:
learn_empty_box: False
merge_no_span_structure: *merge_no_span_structure
replace_empty_cell_token: False
loc_reg_num: *loc_reg_num
max_text_length: *max_text_length
- TableBoxEncode:
in_box_format: *box_format
out_box_format: *box_format
- ResizeTableImage:
max_len: 488
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- PaddingTableImage:
size: [488, 488]
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ]
loader:
shuffle: False
drop_last: False
batch_size_per_card: 48
num_workers: 1