Skip to content

Latest commit

 

History

History
59 lines (46 loc) · 1.96 KB

README.md

File metadata and controls

59 lines (46 loc) · 1.96 KB

pytorch-SIGUA

SIGUA (Stochastic Integrated Gradient Underweighted Ascent) is a robust optimization technique for training models in label noises. This method applies gradient descent on good data (possibly clean data) as usual, and learning-rate-reduced gradient ascent on bad data (possibly noisy data).

Paper: SIGUA: Forgetting May Make Learning with Noisy Labels More Robust (https://proceedings.icml.cc/static/paper_files/icml/2020/705-Paper.pdf)

Usage

  1. Install requirements.txt
pip install -r requirements.txt
  1. Preprocessing (build noisy data)
python main.py \
    --run_mode preprocess \
    --noise_prob 0.5 \
    --noise_type sym \
    --dataset MNIST
  1. Training
python main.py \
    --run_mode train \
    --model sigua \
    --num_gradual 5 \
    --bad_weight 0.001 \
    --tau 0.5
    --lr 0.001 \
    --batch_size 256 \
    --num_class 10

Experiments on MNIST (Image)

Performance results

  • num_gradual = 5
  • bad_weight = 0.001
Settings / Models CNN (reproduce, standard) CNN (paper, standard) CNN (reproduce, SIGUA) CNN (paper, SIGUA)
Sym (ε = 20%) 98.3% - 98.86% 98.91%
Sym (ε = 50%) 94.3% - 98.38% 98.10%

Experiments on TREC (Text)

Performance results

  • num_gradual = 5
  • bad_weight = 0.001
Settings / Models TextCNN (reproduce, standard) TextCNN (reproduce, SIGUA)
Sym (ε = 20%) 80.36% 84.45%
Sym (ε = 50%) 41.9% 80.79%

Original code repository

https://github.com/bhanML/SIGUA