-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
42 lines (34 loc) · 1.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import tensorflow as tf
from model import transformer_model
from data_loader import TrainDataLoader, ValDataLoader, TestDataLoader
from paths import Paths as P
from hyperparams import Hyperparams as H
train_data_loader = TrainDataLoader()
val_data_loader = ValDataLoader()
test_data_loader = TestDataLoader()
optimizer = tf.keras.optimizers.Adam(learning_rate=H.learning_rate)
loss_object = tf.keras.losses.BinaryCrossentropy()
model = transformer_model().get_model()
model.compile(optimizer=optimizer,
loss=loss_object,
metrics=["accuracy"])
# model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(filepath=os.path.join(P.saved_model_dir,
# "epoch_{epoch:02d}_val_loss_{val_loss:05.2f}"),
# verbose=1)
print("Starting training... ")
model.fit(train_data_loader,
epochs=H.num_epochs,
verbose=1,
validation_data=val_data_loader,
max_queue_size=5,
workers=4,
use_multiprocessing=False)
print("Saving model... ")
model.save(P.saved_model, save_format='h5')
print("Training done, evaluating on test...")
model.evaluate(test_data_loader,
max_queue_size=5,
workers=4,
use_multiprocessing=False,
verbose=1)