forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEuler's_Totient_function.c
71 lines (63 loc) · 1.25 KB
/
Euler's_Totient_function.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
Euler's totient function, also known as phi-function ϕ(n), counts the
numberof integers between 1 and n inclusive, which are coprime to n.
*/
#include <stdio.h>
int main(){
int n;
printf("Enter an integer: ");
scanf("%d", &n);
int temp=n;
//This gives euler totient function for N
// Time Complexity: O(N*root(N))
int ans = n;
for (int i = 2; i <= n; ++i) {
if(n%i == 0){
ans = ans - ans/i;
while(n%i == 0)
n/=i;
}
}
if(n>1){
ans = ans - ans/n;
}
n=temp;
printf("\nThe euler totient function for %d is: %d",n,ans);
//This gives euler totient function from 1 to N
// Time Complexity: O(N loglogN) - same as Sieve of Eratosthenes
int phi[n+1];
for (int i = 0; i <= n; ++i) {
phi[i] = i;
}
for (int i = 2; i <= n; ++i) {
if (phi[i] == i) {
for (int j = i; j<=n; j+=i) {
phi[j] = phi[j] - phi[j]/i;
}
}
}
printf("\nThe euler totient function for all integers from 1 to %d is:\n",n);
for (int i = 1; i <= n; ++i) {
printf("%d: %d\n", i, phi[i]);
}
return 0;
}
/*
Time Complexity: O(N loglogN)
OUTPUT
Enter an integer: 10
The euler totient function for 10 is: 4
The euler totient function for all integers from 1 to 10 is:
1: 1
2: 1
3: 2
4: 2
5: 4
6: 2
7: 6
8: 4
9: 6
10: 4
-----
(1,3,7,9) are coprime to 10
*/