diff --git a/App.py b/App.py
index 8db18a02..68e70f8e 100644
--- a/App.py
+++ b/App.py
@@ -176,6 +176,46 @@
Ideal for travel, business meetings, and language learning, breaking down language barriers effortlessly.
"""
},
+ {
+ "name": "Heat Load Predictor",
+ "description": "Estimate the heat energy required for a building using machine learning algorithms based on architectural and environmental features.",
+ "details": """
+ ### Introduction
+ The Heat Load Predictor uses building characteristics and machine learning algorithms to estimate the amount of heat energy required for a building. This tool helps in optimizing energy consumption based on specific architectural and environmental features.
+
+ ### Heat Load Dataset
+ The dataset used for this model contains various features related to building design and environmental factors that impact energy efficiency. The goal is to predict the heat load (Y1) using features such as **Relative Compactness**, **Surface Area**, **Wall Area**, **Roof Area**, and other architectural elements.
+
+ ### Additional Variable Information
+ - **Relative Compactness**: A measure of how compact the building's shape is, affecting its thermal properties.
+ - **Surface Area**: The total external surface area of the building, impacting heat transfer.
+ - **Wall Area**: The area covered by the external walls, which influences heat insulation.
+ - **Roof Area**: The total area of the roof, which affects heat gain or loss.
+ - **Overall Height**: The total height of the building, influencing the volume and energy needed for heating.
+ - **Glazing Area**: The area of windows or glass surfaces, impacting heat gain through sunlight.
+ - **Y1 (Heat Load)**: The predicted amount of heat energy required to maintain the desired indoor temperature.
+ """
+ },
+ {
+ "name": "Cool Load Predictor",
+ "description": "Predict the cooling energy required for a building using advanced machine learning models based on structural and environmental factors.",
+ "details": """
+ ### Introduction
+ The Cool Load Predictor utilizes advanced machine learning models to estimate the cooling energy required for a building. By analyzing structural features and environmental factors, this tool predicts cooling loads and assists in optimizing energy efficiency.
+
+ ### Cool Load Dataset
+ The dataset for this model contains features related to building design and environmental factors that affect cooling efficiency. The aim is to predict the cool load (Y2) using inputs such as **Relative Compactness**, **Surface Area**, **Roof Area**, and other architectural parameters.
+
+ ### Additional Variable Information
+ - **Relative Compactness**: The compactness of the building’s shape, affecting the efficiency of cooling.
+ - **Surface Area**: The total external surface area, impacting how much heat is absorbed or released.
+ - **Wall Area**: The external wall area, influencing heat insulation and cooling needs.
+ - **Roof Area**: The area of the roof, which affects heat transfer and the cooling load.
+ - **Overall Height**: The building's height, which impacts volume and energy required for cooling.
+ - **Glazing Area**: The area of windows or glass surfaces, which can increase or decrease cooling efficiency based on exposure to sunlight.
+ - **Y2 (Cool Load)**: The predicted amount of cooling energy required to maintain optimal indoor temperatures.
+ """
+ }
]
# Define shades of blue for calculators
diff --git a/form_configs/cool_load_predictor.json b/form_configs/cool_load_predictor.json
new file mode 100644
index 00000000..af3aed96
--- /dev/null
+++ b/form_configs/cool_load_predictor.json
@@ -0,0 +1,60 @@
+{
+ "Cool Load Prediction Form": {
+ "Relative Compactness": {
+ "type": "slider",
+ "min_value": 0.5,
+ "default_value": 0.7,
+ "step": 0.01,
+ "field_name": "relative_compactness"
+ },
+ "Surface Area": {
+ "type": "number",
+ "min_value": 300.0,
+ "default_value": 500.0,
+ "step": 0.1,
+ "field_name": "surface_area"
+ },
+ "Wall Area": {
+ "type": "number",
+ "min_value": 200.0,
+ "default_value": 300.0,
+ "step": 0.1,
+ "field_name": "wall_area"
+ },
+ "Roof Area": {
+ "type": "number",
+ "min_value": 100.0,
+ "default_value": 220.0,
+ "step": 0.1,
+ "field_name": "roof_area"
+ },
+ "Overall Height": {
+ "type": "number",
+ "min_value": 2.5,
+ "default_value": 3.5,
+ "step": 0.01,
+ "field_name": "overall_height"
+ },
+ "Orientation": {
+ "type": "number",
+ "min_value": 1,
+ "default_value": 2,
+ "step": 1,
+ "field_name": "orientation"
+ },
+ "Glazing Area": {
+ "type": "slider",
+ "min_value": 0.0,
+ "default_value": 0.1,
+ "step": 0.01,
+ "field_name": "glazing_area"
+ },
+ "Glazing Area Distribution": {
+ "type": "number",
+ "min_value": 0.0,
+ "default_value": 0.25,
+ "step": 0.01,
+ "field_name": "glazing_area_distribution"
+ }
+ }
+}
diff --git a/form_configs/heat_load_predictor.json b/form_configs/heat_load_predictor.json
new file mode 100644
index 00000000..49c19804
--- /dev/null
+++ b/form_configs/heat_load_predictor.json
@@ -0,0 +1,60 @@
+{
+ "Heat Load Prediction Form": {
+ "Relative Compactness": {
+ "type": "slider",
+ "min_value": 0.5,
+ "default_value": 0.7,
+ "step": 0.01,
+ "field_name": "relative_compactness"
+ },
+ "Surface Area": {
+ "type": "number",
+ "min_value": 300.0,
+ "default_value": 500.0,
+ "step": 0.1,
+ "field_name": "surface_area"
+ },
+ "Wall Area": {
+ "type": "number",
+ "min_value": 200.0,
+ "default_value": 300.0,
+ "step": 0.1,
+ "field_name": "wall_area"
+ },
+ "Roof Area": {
+ "type": "number",
+ "min_value": 100.0,
+ "default_value": 220.0,
+ "step": 0.1,
+ "field_name": "roof_area"
+ },
+ "Overall Height": {
+ "type": "number",
+ "min_value": 2.5,
+ "default_value": 3.5,
+ "step": 0.01,
+ "field_name": "overall_height"
+ },
+ "Orientation": {
+ "type": "number",
+ "min_value": 1,
+ "default_value": 2,
+ "step": 1,
+ "field_name": "orientation"
+ },
+ "Glazing Area": {
+ "type": "slider",
+ "min_value": 0.0,
+ "default_value": 0.1,
+ "step": 0.01,
+ "field_name": "glazing_area"
+ },
+ "Glazing Area Distribution": {
+ "type": "number",
+ "min_value": 0.0,
+ "default_value": 0.25,
+ "step": 0.01,
+ "field_name": "glazing_area_distribution"
+ }
+ }
+}
diff --git a/models/Heat_Cool_Load_Predictor/cool_model_predict.py b/models/Heat_Cool_Load_Predictor/cool_model_predict.py
new file mode 100644
index 00000000..643a5652
--- /dev/null
+++ b/models/Heat_Cool_Load_Predictor/cool_model_predict.py
@@ -0,0 +1,4 @@
+from models.Heat_Cool_Load_Predictor.model import cool_load_prediction
+
+def get_prediction(relative_compactness, surface_area, wall_area, roof_area, overall_height, orientation, glazing_area, glazing_area_distribution):
+ return cool_load_prediction(relative_compactness, surface_area, wall_area, roof_area, overall_height, orientation, glazing_area, glazing_area_distribution)
diff --git a/models/Heat_Cool_Load_Predictor/data/energy_efficiency_dataset.csv b/models/Heat_Cool_Load_Predictor/data/energy_efficiency_dataset.csv
new file mode 100644
index 00000000..564a53de
--- /dev/null
+++ b/models/Heat_Cool_Load_Predictor/data/energy_efficiency_dataset.csv
@@ -0,0 +1,775 @@
+X1,X2,X3,X4,X5,X6,X7,X8,Y1,Y2
+0.98,514.50,294.00,110.25,7.00,2,0.00,0,15.55,21.33
+0.98,514.50,294.00,110.25,7.00,3,0.00,0,15.55,21.33
+0.98,514.50,294.00,110.25,7.00,4,0.00,0,15.55,21.33
+0.98,514.50,294.00,110.25,7.00,5,0.00,0,15.55,21.33
+0.90,563.50,318.50,122.50,7.00,2,0.00,0,20.84,28.28
+0.90,563.50,318.50,122.50,7.00,3,0.00,0,21.46,25.38
+0.90,563.50,318.50,122.50,7.00,4,0.00,0,20.71,25.16
+0.90,563.50,318.50,122.50,7.00,5,0.00,0,19.68,29.60
+0.86,588.00,294.00,147.00,7.00,2,0.00,0,19.50,27.30
+0.86,588.00,294.00,147.00,7.00,3,0.00,0,19.95,21.97
+0.86,588.00,294.00,147.00,7.00,4,0.00,0,19.34,23.49
+0.86,588.00,294.00,147.00,7.00,5,0.00,0,18.31,27.87
+0.82,612.50,318.50,147.00,7.00,2,0.00,0,17.05,23.77
+0.82,612.50,318.50,147.00,7.00,3,0.00,0,17.41,21.46
+0.82,612.50,318.50,147.00,7.00,4,0.00,0,16.95,21.16
+0.82,612.50,318.50,147.00,7.00,5,0.00,0,15.98,24.93
+0.79,637.00,343.00,147.00,7.00,2,0.00,0,28.52,37.73
+0.79,637.00,343.00,147.00,7.00,3,0.00,0,29.90,31.27
+0.79,637.00,343.00,147.00,7.00,4,0.00,0,29.63,30.93
+0.79,637.00,343.00,147.00,7.00,5,0.00,0,28.75,39.44
+0.76,661.50,416.50,122.50,7.00,2,0.00,0,24.77,29.79
+0.76,661.50,416.50,122.50,7.00,3,0.00,0,23.93,29.68
+0.76,661.50,416.50,122.50,7.00,4,0.00,0,24.77,29.79
+0.76,661.50,416.50,122.50,7.00,5,0.00,0,23.93,29.40
+0.74,686.00,245.00,220.50,3.50,2,0.00,0,6.07,10.90
+0.74,686.00,245.00,220.50,3.50,3,0.00,0,6.05,11.19
+0.74,686.00,245.00,220.50,3.50,4,0.00,0,6.01,10.94
+0.74,686.00,245.00,220.50,3.50,5,0.00,0,6.04,11.17
+0.71,710.50,269.50,220.50,3.50,2,0.00,0,6.37,11.27
+0.71,710.50,269.50,220.50,3.50,3,0.00,0,6.40,11.72
+0.71,710.50,269.50,220.50,3.50,4,0.00,0,6.37,11.29
+0.71,710.50,269.50,220.50,3.50,5,0.00,0,6.40,11.67
+0.69,735.00,294.00,220.50,3.50,2,0.00,0,6.85,11.74
+0.69,735.00,294.00,220.50,3.50,3,0.00,0,6.79,12.05
+0.69,735.00,294.00,220.50,3.50,4,0.00,0,6.77,11.73
+0.69,735.00,294.00,220.50,3.50,5,0.00,0,6.81,11.93
+0.66,759.50,318.50,220.50,3.50,2,0.00,0,7.18,12.40
+0.66,759.50,318.50,220.50,3.50,3,0.00,0,7.10,12.23
+0.66,759.50,318.50,220.50,3.50,4,0.00,0,7.10,12.40
+0.66,759.50,318.50,220.50,3.50,5,0.00,0,7.10,12.14
+0.64,784.00,343.00,220.50,3.50,2,0.00,0,10.85,16.78
+0.64,784.00,343.00,220.50,3.50,3,0.00,0,10.54,16.80
+0.64,784.00,343.00,220.50,3.50,4,0.00,0,10.77,16.75
+0.64,784.00,343.00,220.50,3.50,5,0.00,0,10.56,16.67
+0.62,808.50,367.50,220.50,3.50,2,0.00,0,8.60,12.07
+0.62,808.50,367.50,220.50,3.50,3,0.00,0,8.49,12.22
+0.62,808.50,367.50,220.50,3.50,4,0.00,0,8.45,12.08
+0.62,808.50,367.50,220.50,3.50,5,0.00,0,8.50,12.04
+0.98,514.50,294.00,110.25,7.00,2,0.10,1,24.58,26.47
+0.98,514.50,294.00,110.25,7.00,3,0.10,1,24.63,26.37
+0.98,514.50,294.00,110.25,7.00,4,0.10,1,24.63,26.44
+0.98,514.50,294.00,110.25,7.00,5,0.10,1,24.59,26.29
+0.90,563.50,318.50,122.50,7.00,2,0.10,1,29.03,32.92
+0.90,563.50,318.50,122.50,7.00,3,0.10,1,29.87,29.87
+0.90,563.50,318.50,122.50,7.00,4,0.10,1,29.14,29.58
+0.90,563.50,318.50,122.50,7.00,5,0.10,1,28.09,34.33
+0.86,588.00,294.00,147.00,7.00,2,0.10,1,26.28,30.89
+0.86,588.00,294.00,147.00,7.00,3,0.10,1,26.91,25.60
+0.86,588.00,294.00,147.00,7.00,4,0.10,1,26.37,27.03
+0.86,588.00,294.00,147.00,7.00,5,0.10,1,25.27,31.73
+0.82,612.50,318.50,147.00,7.00,2,0.10,1,23.53,27.31
+0.82,612.50,318.50,147.00,7.00,3,0.10,1,24.03,24.91
+0.82,612.50,318.50,147.00,7.00,4,0.10,1,23.54,24.61
+0.82,612.50,318.50,147.00,7.00,5,0.10,1,22.58,28.51
+0.79,637.00,343.00,147.00,7.00,2,0.10,1,35.56,41.68
+0.79,637.00,343.00,147.00,7.00,3,0.10,1,37.12,35.28
+0.79,637.00,343.00,147.00,7.00,4,0.10,1,36.90,34.43
+0.79,637.00,343.00,147.00,7.00,5,0.10,1,35.94,43.33
+0.76,661.50,416.50,122.50,7.00,2,0.10,1,32.96,33.87
+0.76,661.50,416.50,122.50,7.00,3,0.10,1,32.12,34.07
+0.76,661.50,416.50,122.50,7.00,4,0.10,1,32.94,34.14
+0.76,661.50,416.50,122.50,7.00,5,0.10,1,32.21,33.67
+0.74,686.00,245.00,220.50,3.50,2,0.10,1,10.36,13.43
+0.74,686.00,245.00,220.50,3.50,3,0.10,1,10.43,13.71
+0.74,686.00,245.00,220.50,3.50,4,0.10,1,10.36,13.48
+0.74,686.00,245.00,220.50,3.50,5,0.10,1,10.39,13.70
+0.71,710.50,269.50,220.50,3.50,2,0.10,1,10.71,13.80
+0.71,710.50,269.50,220.50,3.50,3,0.10,1,10.80,14.28
+0.71,710.50,269.50,220.50,3.50,4,0.10,1,10.70,13.87
+0.71,710.50,269.50,220.50,3.50,5,0.10,1,10.75,14.27
+0.69,735.00,294.00,220.50,3.50,2,0.10,1,11.11,14.28
+0.69,735.00,294.00,220.50,3.50,3,0.10,1,11.13,14.61
+0.69,735.00,294.00,220.50,3.50,4,0.10,1,11.09,14.30
+0.69,735.00,294.00,220.50,3.50,5,0.10,1,11.16,14.45
+0.66,759.50,318.50,220.50,3.50,2,0.10,1,11.68,13.90
+0.66,759.50,318.50,220.50,3.50,3,0.10,1,11.69,13.72
+0.66,759.50,318.50,220.50,3.50,4,0.10,1,11.70,13.88
+0.66,759.50,318.50,220.50,3.50,5,0.10,1,11.69,13.65
+0.64,784.00,343.00,220.50,3.50,2,0.10,1,15.41,19.37
+0.64,784.00,343.00,220.50,3.50,3,0.10,1,15.20,19.43
+0.64,784.00,343.00,220.50,3.50,4,0.10,1,15.42,19.34
+0.64,784.00,343.00,220.50,3.50,5,0.10,1,15.21,19.32
+0.62,808.50,367.50,220.50,3.50,2,0.10,1,12.96,14.34
+0.62,808.50,367.50,220.50,3.50,3,0.10,1,12.97,14.50
+0.62,808.50,367.50,220.50,3.50,4,0.10,1,12.93,14.33
+0.62,808.50,367.50,220.50,3.50,5,0.10,1,13.02,14.27
+0.98,514.50,294.00,110.25,7.00,2,0.10,2,24.29,25.95
+0.98,514.50,294.00,110.25,7.00,3,0.10,2,24.31,25.63
+0.98,514.50,294.00,110.25,7.00,4,0.10,2,24.13,26.13
+0.98,514.50,294.00,110.25,7.00,5,0.10,2,24.25,25.89
+0.90,563.50,318.50,122.50,7.00,2,0.10,2,28.88,32.54
+0.90,563.50,318.50,122.50,7.00,3,0.10,2,29.68,29.44
+0.90,563.50,318.50,122.50,7.00,4,0.10,2,28.83,29.36
+0.90,563.50,318.50,122.50,7.00,5,0.10,2,27.90,34.20
+0.86,588.00,294.00,147.00,7.00,2,0.10,2,26.48,30.91
+0.86,588.00,294.00,147.00,7.00,3,0.10,2,27.02,25.63
+0.86,588.00,294.00,147.00,7.00,4,0.10,2,26.33,27.36
+0.86,588.00,294.00,147.00,7.00,5,0.10,2,25.36,31.90
+0.82,612.50,318.50,147.00,7.00,2,0.10,2,23.75,27.38
+0.82,612.50,318.50,147.00,7.00,3,0.10,2,24.23,25.02
+0.82,612.50,318.50,147.00,7.00,4,0.10,2,23.67,24.80
+0.82,612.50,318.50,147.00,7.00,5,0.10,2,22.79,28.79
+0.79,637.00,343.00,147.00,7.00,2,0.10,2,35.65,41.07
+0.79,637.00,343.00,147.00,7.00,3,0.10,2,37.26,34.62
+0.79,637.00,343.00,147.00,7.00,4,0.10,2,36.97,33.87
+0.79,637.00,343.00,147.00,7.00,5,0.10,2,36.03,42.86
+0.76,661.50,416.50,122.50,7.00,2,0.10,2,33.16,33.91
+0.76,661.50,416.50,122.50,7.00,3,0.10,2,32.40,34.07
+0.76,661.50,416.50,122.50,7.00,4,0.10,2,33.12,34.17
+0.76,661.50,416.50,122.50,7.00,5,0.10,2,32.41,33.78
+0.74,686.00,245.00,220.50,3.50,2,0.10,2,10.42,13.39
+0.74,686.00,245.00,220.50,3.50,3,0.10,2,10.46,13.72
+0.74,686.00,245.00,220.50,3.50,4,0.10,2,10.32,13.57
+0.74,686.00,245.00,220.50,3.50,5,0.10,2,10.45,13.79
+0.71,710.50,269.50,220.50,3.50,2,0.10,2,10.64,13.67
+0.71,710.50,269.50,220.50,3.50,3,0.10,2,10.72,14.11
+0.71,710.50,269.50,220.50,3.50,4,0.10,2,10.55,13.80
+0.71,710.50,269.50,220.50,3.50,5,0.10,2,10.68,14.21
+0.69,735.00,294.00,220.50,3.50,2,0.10,2,11.45,13.20
+0.69,735.00,294.00,220.50,3.50,3,0.10,2,11.46,13.54
+0.69,735.00,294.00,220.50,3.50,4,0.10,2,11.32,13.32
+0.69,735.00,294.00,220.50,3.50,5,0.10,2,11.49,13.51
+0.66,759.50,318.50,220.50,3.50,2,0.10,2,11.45,14.86
+0.66,759.50,318.50,220.50,3.50,3,0.10,2,11.42,14.75
+0.66,759.50,318.50,220.50,3.50,4,0.10,2,11.33,15.00
+0.66,759.50,318.50,220.50,3.50,5,0.10,2,11.43,14.74
+0.64,784.00,343.00,220.50,3.50,2,0.10,2,15.41,19.23
+0.64,784.00,343.00,220.50,3.50,3,0.10,2,15.18,19.34
+0.64,784.00,343.00,220.50,3.50,4,0.10,2,15.34,19.32
+0.64,784.00,343.00,220.50,3.50,5,0.10,2,15.19,19.30
+0.62,808.50,367.50,220.50,3.50,2,0.10,2,12.88,14.37
+0.62,808.50,367.50,220.50,3.50,3,0.10,2,13.00,14.57
+0.62,808.50,367.50,220.50,3.50,4,0.10,2,12.97,14.27
+0.62,808.50,367.50,220.50,3.50,5,0.10,2,13.04,14.24
+0.98,514.50,294.00,110.25,7.00,2,0.10,3,24.28,25.68
+0.98,514.50,294.00,110.25,7.00,3,0.10,3,24.40,26.02
+0.98,514.50,294.00,110.25,7.00,4,0.10,3,24.11,25.84
+0.98,514.50,294.00,110.25,7.00,5,0.10,3,24.35,26.14
+0.90,563.50,318.50,122.50,7.00,2,0.10,3,28.07,34.14
+0.90,563.50,318.50,122.50,7.00,3,0.10,3,29.01,32.85
+0.90,563.50,318.50,122.50,7.00,4,0.10,3,29.62,30.08
+0.90,563.50,318.50,122.50,7.00,5,0.10,3,29.05,29.67
+0.86,588.00,294.00,147.00,7.00,2,0.10,3,25.41,31.73
+0.86,588.00,294.00,147.00,7.00,3,0.10,3,26.47,31.01
+0.86,588.00,294.00,147.00,7.00,4,0.10,3,26.89,25.90
+0.86,588.00,294.00,147.00,7.00,5,0.10,3,26.46,27.40
+0.82,612.50,318.50,147.00,7.00,2,0.10,3,22.93,28.68
+0.82,612.50,318.50,147.00,7.00,3,0.10,3,23.84,27.54
+0.82,612.50,318.50,147.00,7.00,4,0.10,3,24.17,25.35
+0.82,612.50,318.50,147.00,7.00,5,0.10,3,23.87,24.93
+0.79,637.00,343.00,147.00,7.00,2,0.10,3,35.78,43.12
+0.79,637.00,343.00,147.00,7.00,3,0.10,3,35.48,41.22
+0.79,637.00,343.00,147.00,7.00,4,0.10,3,36.97,35.10
+0.79,637.00,343.00,147.00,7.00,5,0.10,3,36.70,34.29
+0.76,661.50,416.50,122.50,7.00,2,0.10,3,32.52,33.85
+0.76,661.50,416.50,122.50,7.00,3,0.10,3,33.28,34.11
+0.76,661.50,416.50,122.50,7.00,4,0.10,3,32.33,34.48
+0.76,661.50,416.50,122.50,7.00,5,0.10,3,33.24,34.50
+0.74,686.00,245.00,220.50,3.50,2,0.10,3,10.39,13.60
+0.74,686.00,245.00,220.50,3.50,3,0.10,3,10.34,13.36
+0.74,686.00,245.00,220.50,3.50,4,0.10,3,10.35,13.65
+0.74,686.00,245.00,220.50,3.50,5,0.10,3,10.38,13.49
+0.71,710.50,269.50,220.50,3.50,2,0.10,3,10.77,14.14
+0.71,710.50,269.50,220.50,3.50,3,0.10,3,10.68,13.77
+0.71,710.50,269.50,220.50,3.50,4,0.10,3,10.68,14.30
+0.71,710.50,269.50,220.50,3.50,5,0.10,3,10.70,13.87
+0.69,735.00,294.00,220.50,3.50,2,0.10,3,11.22,14.44
+0.69,735.00,294.00,220.50,3.50,3,0.10,3,11.16,14.27
+0.69,735.00,294.00,220.50,3.50,4,0.10,3,11.10,14.67
+0.69,735.00,294.00,220.50,3.50,5,0.10,3,11.14,14.40
+0.66,759.50,318.50,220.50,3.50,2,0.10,3,11.59,13.46
+0.66,759.50,318.50,220.50,3.50,3,0.10,3,11.60,13.70
+0.66,759.50,318.50,220.50,3.50,4,0.10,3,11.53,13.59
+0.66,759.50,318.50,220.50,3.50,5,0.10,3,11.61,13.83
+0.64,784.00,343.00,220.50,3.50,2,0.10,3,15.16,19.14
+0.64,784.00,343.00,220.50,3.50,3,0.10,3,15.36,19.18
+0.64,784.00,343.00,220.50,3.50,4,0.10,3,15.12,19.37
+0.64,784.00,343.00,220.50,3.50,5,0.10,3,15.36,19.29
+0.62,808.50,367.50,220.50,3.50,2,0.10,3,12.68,14.09
+0.62,808.50,367.50,220.50,3.50,3,0.10,3,12.63,14.23
+0.62,808.50,367.50,220.50,3.50,4,0.10,3,12.71,14.14
+0.62,808.50,367.50,220.50,3.50,5,0.10,3,12.73,13.89
+0.98,514.50,294.00,110.25,7.00,2,0.10,4,24.38,25.91
+0.98,514.50,294.00,110.25,7.00,3,0.10,4,24.23,25.72
+0.98,514.50,294.00,110.25,7.00,4,0.10,4,24.04,26.18
+0.98,514.50,294.00,110.25,7.00,5,0.10,4,24.32,25.87
+0.90,563.50,318.50,122.50,7.00,2,0.10,4,29.06,29.34
+0.90,563.50,318.50,122.50,7.00,3,0.10,4,28.05,33.91
+0.90,563.50,318.50,122.50,7.00,4,0.10,4,28.86,32.83
+0.90,563.50,318.50,122.50,7.00,5,0.10,4,29.79,29.92
+0.86,588.00,294.00,147.00,7.00,2,0.10,4,26.44,27.17
+0.86,588.00,294.00,147.00,7.00,3,0.10,4,25.37,31.76
+0.86,588.00,294.00,147.00,7.00,4,0.10,4,26.33,31.06
+0.86,588.00,294.00,147.00,7.00,5,0.10,4,27.03,25.81
+0.82,612.50,318.50,147.00,7.00,2,0.10,4,23.80,24.61
+0.82,612.50,318.50,147.00,7.00,3,0.10,4,22.80,28.61
+0.82,612.50,318.50,147.00,7.00,4,0.10,4,23.59,27.57
+0.82,612.50,318.50,147.00,7.00,5,0.10,4,24.24,25.16
+0.79,637.00,343.00,147.00,7.00,2,0.10,4,36.86,34.25
+0.79,637.00,343.00,147.00,7.00,3,0.10,4,35.89,43.30
+0.79,637.00,343.00,147.00,7.00,4,0.10,4,35.45,41.86
+0.79,637.00,343.00,147.00,7.00,5,0.10,4,37.10,35.29
+0.76,661.50,416.50,122.50,7.00,2,0.10,4,33.08,34.11
+0.76,661.50,416.50,122.50,7.00,3,0.10,4,32.38,33.62
+0.76,661.50,416.50,122.50,7.00,4,0.10,4,33.09,33.89
+0.76,661.50,416.50,122.50,7.00,5,0.10,4,32.31,34.05
+0.74,686.00,245.00,220.50,3.50,2,0.10,4,10.08,13.20
+0.74,686.00,245.00,220.50,3.50,3,0.10,4,10.15,13.36
+0.74,686.00,245.00,220.50,3.50,4,0.10,4,10.07,13.21
+0.74,686.00,245.00,220.50,3.50,5,0.10,4,10.14,13.53
+0.71,710.50,269.50,220.50,3.50,2,0.10,4,10.66,13.67
+0.71,710.50,269.50,220.50,3.50,3,0.10,4,10.68,14.12
+0.71,710.50,269.50,220.50,3.50,4,0.10,4,10.53,13.79
+0.71,710.50,269.50,220.50,3.50,5,0.10,4,10.72,14.20
+0.69,735.00,294.00,220.50,3.50,2,0.10,4,11.18,14.29
+0.69,735.00,294.00,220.50,3.50,3,0.10,4,11.22,14.49
+0.69,735.00,294.00,220.50,3.50,4,0.10,4,11.07,14.42
+0.69,735.00,294.00,220.50,3.50,5,0.10,4,11.20,14.73
+0.66,759.50,318.50,220.50,3.50,2,0.10,4,11.44,14.86
+0.66,759.50,318.50,220.50,3.50,3,0.10,4,11.42,14.67
+0.66,759.50,318.50,220.50,3.50,4,0.10,4,11.33,15.00
+0.66,759.50,318.50,220.50,3.50,5,0.10,4,11.43,14.83
+0.64,784.00,343.00,220.50,3.50,2,0.10,4,15.40,19.24
+0.64,784.00,343.00,220.50,3.50,3,0.10,4,15.19,19.25
+0.64,784.00,343.00,220.50,3.50,4,0.10,4,15.32,19.42
+0.64,784.00,343.00,220.50,3.50,5,0.10,4,15.16,19.48
+0.62,808.50,367.50,220.50,3.50,2,0.10,4,12.85,14.37
+0.62,808.50,367.50,220.50,3.50,3,0.10,4,13.04,14.34
+0.62,808.50,367.50,220.50,3.50,4,0.10,4,13.00,14.28
+0.62,808.50,367.50,220.50,3.50,5,0.10,4,13.00,14.47
+0.98,514.50,294.00,110.25,7.00,2,0.10,5,24.35,25.64
+0.98,514.50,294.00,110.25,7.00,3,0.10,5,24.33,25.98
+0.98,514.50,294.00,110.25,7.00,4,0.10,5,24.03,25.88
+0.98,514.50,294.00,110.25,7.00,5,0.10,5,24.26,26.18
+0.90,563.50,318.50,122.50,7.00,2,0.10,5,29.83,29.82
+0.90,563.50,318.50,122.50,7.00,3,0.10,5,29.08,29.52
+0.90,563.50,318.50,122.50,7.00,4,0.10,5,28.03,34.45
+0.90,563.50,318.50,122.50,7.00,5,0.10,5,29.02,33.01
+0.86,588.00,294.00,147.00,7.00,2,0.10,5,27.03,25.82
+0.86,588.00,294.00,147.00,7.00,3,0.10,5,26.45,27.33
+0.86,588.00,294.00,147.00,7.00,4,0.10,5,25.36,32.04
+0.86,588.00,294.00,147.00,7.00,5,0.10,5,26.45,31.28
+0.82,612.50,318.50,147.00,7.00,2,0.10,5,24.37,25.11
+0.82,612.50,318.50,147.00,7.00,3,0.10,5,23.89,24.77
+0.82,612.50,318.50,147.00,7.00,4,0.10,5,22.89,28.88
+0.82,612.50,318.50,147.00,7.00,5,0.10,5,23.86,27.69
+0.79,637.00,343.00,147.00,7.00,2,0.10,5,37.03,34.99
+0.79,637.00,343.00,147.00,7.00,3,0.10,5,36.71,34.18
+0.79,637.00,343.00,147.00,7.00,4,0.10,5,36.77,43.14
+0.79,637.00,343.00,147.00,7.00,5,0.10,5,35.48,41.26
+0.76,661.50,416.50,122.50,7.00,2,0.10,5,32.31,34.25
+0.76,661.50,416.50,122.50,7.00,3,0.10,5,33.21,34.35
+0.76,661.50,416.50,122.50,7.00,4,0.10,5,32.46,33.64
+0.76,661.50,416.50,122.50,7.00,5,0.10,5,33.27,33.88
+0.74,686.00,245.00,220.50,3.50,2,0.10,5,10.47,13.65
+0.74,686.00,245.00,220.50,3.50,3,0.10,5,10.37,13.44
+0.74,686.00,245.00,220.50,3.50,4,0.10,5,10.34,13.72
+0.74,686.00,245.00,220.50,3.50,5,0.10,5,10.39,13.50
+0.71,710.50,269.50,220.50,3.50,2,0.10,5,10.78,14.18
+0.71,710.50,269.50,220.50,3.50,3,0.10,5,10.70,13.75
+0.71,710.50,269.50,220.50,3.50,4,0.10,5,10.67,14.26
+0.71,710.50,269.50,220.50,3.50,5,0.10,5,13.69,13.89
+0.69,735.00,294.00,220.50,3.50,2,0.10,5,11.21,14.55
+0.69,735.00,294.00,220.50,3.50,3,0.10,5,11.14,14.28
+0.69,735.00,294.00,220.50,3.50,4,0.10,5,11.11,14.46
+0.69,735.00,294.00,220.50,3.50,5,0.10,5,11.16,14.39
+0.66,759.50,318.50,220.50,3.50,2,0.10,5,11.38,14.54
+0.66,759.50,318.50,220.50,3.50,3,0.10,5,11.34,14.81
+0.66,759.50,318.50,220.50,3.50,4,0.10,5,11.22,14.65
+0.66,759.50,318.50,220.50,3.50,5,0.10,5,11.34,14.87
+0.64,784.00,343.00,220.50,3.50,2,0.10,5,15.16,19.24
+0.64,784.00,343.00,220.50,3.50,3,0.10,5,15.37,19.18
+0.64,784.00,343.00,220.50,3.50,4,0.10,5,15.12,19.26
+0.64,784.00,343.00,220.50,3.50,5,0.10,5,15.36,19.29
+0.62,808.50,367.50,220.50,3.50,2,0.10,5,12.59,14.24
+0.62,808.50,367.50,220.50,3.50,3,0.10,5,12.74,13.97
+0.62,808.50,367.50,220.50,3.50,4,0.10,5,12.80,13.99
+0.62,808.50,367.50,220.50,3.50,5,0.10,5,12.62,14.15
+0.98,514.50,294.00,110.25,7.00,2,0.25,1,28.15,29.79
+0.98,514.50,294.00,110.25,7.00,3,0.25,1,28.15,29.79
+0.98,514.50,294.00,110.25,7.00,4,0.25,1,28.37,29.28
+0.98,514.50,294.00,110.25,7.00,5,0.25,1,28.41,29.49
+0.90,563.50,318.50,122.50,7.00,2,0.25,1,32.68,36.12
+0.90,563.50,318.50,122.50,7.00,3,0.25,1,33.48,33.17
+0.90,563.50,318.50,122.50,7.00,4,0.25,1,32.84,32.71
+0.90,563.50,318.50,122.50,7.00,5,0.25,1,32.00,37.58
+0.86,588.00,294.00,147.00,7.00,2,0.25,1,29.54,33.98
+0.86,588.00,294.00,147.00,7.00,3,0.25,1,30.05,28.61
+0.86,588.00,294.00,147.00,7.00,4,0.25,1,29.60,30.12
+0.86,588.00,294.00,147.00,7.00,5,0.25,1,28.66,34.73
+0.82,612.50,318.50,147.00,7.00,2,0.25,1,26.84,30.17
+0.82,612.50,318.50,147.00,7.00,3,0.25,1,27.27,27.84
+0.82,612.50,318.50,147.00,7.00,4,0.25,1,26.97,27.25
+0.82,612.50,318.50,147.00,7.00,5,0.25,1,26.19,31.39
+0.79,637.00,343.00,147.00,7.00,2,0.25,1,38.67,43.80
+0.79,637.00,343.00,147.00,7.00,3,0.25,1,40.03,37.81
+0.79,637.00,343.00,147.00,7.00,4,0.25,1,39.86,36.85
+0.79,637.00,343.00,147.00,7.00,5,0.25,1,39.04,45.52
+0.76,661.50,416.50,122.50,7.00,2,0.25,1,36.96,36.85
+0.76,661.50,416.50,122.50,7.00,3,0.25,1,36.13,37.58
+0.76,661.50,416.50,122.50,7.00,4,0.25,1,36.91,37.45
+0.76,661.50,416.50,122.50,7.00,5,0.25,1,36.43,36.62
+0.74,686.00,245.00,220.50,3.50,2,0.25,1,12.43,15.19
+0.74,686.00,245.00,220.50,3.50,3,0.25,1,12.50,15.50
+0.74,686.00,245.00,220.50,3.50,4,0.25,1,12.41,15.28
+0.74,686.00,245.00,220.50,3.50,5,0.25,1,12.45,15.50
+0.71,710.50,269.50,220.50,3.50,2,0.25,1,12.57,15.42
+0.71,710.50,269.50,220.50,3.50,3,0.25,1,12.65,15.85
+0.71,710.50,269.50,220.50,3.50,4,0.25,1,12.57,15.44
+0.71,710.50,269.50,220.50,3.50,5,0.25,1,12.63,15.81
+0.69,735.00,294.00,220.50,3.50,2,0.25,1,12.78,15.21
+0.69,735.00,294.00,220.50,3.50,3,0.25,1,12.93,15.63
+0.69,735.00,294.00,220.50,3.50,4,0.25,1,12.73,15.48
+0.69,735.00,294.00,220.50,3.50,5,0.25,1,12.72,15.78
+0.66,759.50,318.50,220.50,3.50,2,0.25,1,13.17,16.39
+0.66,759.50,318.50,220.50,3.50,3,0.25,1,13.18,16.27
+0.66,759.50,318.50,220.50,3.50,4,0.25,1,13.17,16.39
+0.66,759.50,318.50,220.50,3.50,5,0.25,1,13.18,16.19
+0.64,784.00,343.00,220.50,3.50,2,0.25,1,17.50,21.13
+0.64,784.00,343.00,220.50,3.50,3,0.25,1,17.35,21.19
+0.64,784.00,343.00,220.50,3.50,4,0.25,1,17.52,21.09
+0.64,784.00,343.00,220.50,3.50,5,0.25,1,17.37,21.08
+0.62,808.50,367.50,220.50,3.50,2,0.25,1,15.09,15.77
+0.62,808.50,367.50,220.50,3.50,3,0.25,1,15.12,15.95
+0.62,808.50,367.50,220.50,3.50,4,0.25,1,15.08,15.77
+0.62,808.50,367.50,220.50,3.50,5,0.25,1,15.16,15.76
+0.98,514.50,294.00,110.25,7.00,2,0.25,2,28.67,29.62
+0.98,514.50,294.00,110.25,7.00,3,0.25,2,28.57,29.69
+0.98,514.50,294.00,110.25,7.00,4,0.25,2,28.18,30.18
+0.98,514.50,294.00,110.25,7.00,5,0.25,2,28.60,30.02
+0.90,563.50,318.50,122.50,7.00,2,0.25,2,32.46,35.56
+0.90,563.50,318.50,122.50,7.00,3,0.25,2,33.27,32.64
+0.90,563.50,318.50,122.50,7.00,4,0.25,2,32.33,32.77
+0.90,563.50,318.50,122.50,7.00,5,0.25,2,31.66,37.72
+0.86,588.00,294.00,147.00,7.00,2,0.25,2,29.34,33.37
+0.86,588.00,294.00,147.00,7.00,3,0.25,2,29.87,27.89
+0.86,588.00,294.00,147.00,7.00,4,0.25,2,29.27,29.90
+0.86,588.00,294.00,147.00,7.00,5,0.25,2,28.40,34.52
+0.82,612.50,318.50,147.00,7.00,2,0.25,2,25.74,28.27
+0.82,612.50,318.50,147.00,7.00,3,0.25,2,25.98,26.96
+0.82,612.50,318.50,147.00,7.00,4,0.25,2,25.38,26.72
+0.82,612.50,318.50,147.00,7.00,5,0.25,2,24.94,29.88
+0.79,637.00,343.00,147.00,7.00,2,0.25,2,38.57,43.86
+0.79,637.00,343.00,147.00,7.00,3,0.25,2,40.19,37.41
+0.79,637.00,343.00,147.00,7.00,4,0.25,2,39.97,36.77
+0.79,637.00,343.00,147.00,7.00,5,0.25,2,38.98,45.97
+0.76,661.50,416.50,122.50,7.00,2,0.25,2,36.95,36.87
+0.76,661.50,416.50,122.50,7.00,3,0.25,2,36.28,37.35
+0.76,661.50,416.50,122.50,7.00,4,0.25,2,36.86,37.28
+0.76,661.50,416.50,122.50,7.00,5,0.25,2,36.45,36.81
+0.74,686.00,245.00,220.50,3.50,2,0.25,2,12.35,14.73
+0.74,686.00,245.00,220.50,3.50,3,0.25,2,12.45,15.10
+0.74,686.00,245.00,220.50,3.50,4,0.25,2,12.16,15.18
+0.74,686.00,245.00,220.50,3.50,5,0.25,2,12.30,15.44
+0.71,710.50,269.50,220.50,3.50,2,0.25,2,12.33,14.91
+0.71,710.50,269.50,220.50,3.50,3,0.25,2,12.29,15.40
+0.71,710.50,269.50,220.50,3.50,4,0.25,2,12.20,14.94
+0.71,710.50,269.50,220.50,3.50,5,0.25,2,12.49,15.32
+0.69,735.00,294.00,220.50,3.50,2,0.25,2,12.85,15.52
+0.69,735.00,294.00,220.50,3.50,3,0.25,2,12.87,15.85
+0.69,735.00,294.00,220.50,3.50,4,0.25,2,12.73,15.66
+0.69,735.00,294.00,220.50,3.50,5,0.25,2,12.95,15.99
+0.66,759.50,318.50,220.50,3.50,2,0.25,2,13.05,15.89
+0.66,759.50,318.50,220.50,3.50,3,0.25,2,12.93,15.85
+0.66,759.50,318.50,220.50,3.50,4,0.25,2,12.77,16.22
+0.66,759.50,318.50,220.50,3.50,5,0.25,2,13.00,15.87
+0.64,784.00,343.00,220.50,3.50,2,0.25,2,17.14,20.47
+0.64,784.00,343.00,220.50,3.50,3,0.25,2,16.84,20.56
+0.64,784.00,343.00,220.50,3.50,4,0.25,2,17.02,20.48
+0.64,784.00,343.00,220.50,3.50,5,0.25,2,17.11,20.43
+0.62,808.50,367.50,220.50,3.50,2,0.25,2,14.34,15.32
+0.62,808.50,367.50,220.50,3.50,3,0.25,2,14.66,15.64
+0.62,808.50,367.50,220.50,3.50,4,0.25,2,14.60,15.14
+0.62,808.50,367.50,220.50,3.50,5,0.25,2,14.60,15.30
+0.98,514.50,294.00,110.25,7.00,2,0.25,3,28.67,29.43
+0.98,514.50,294.00,110.25,7.00,3,0.25,3,28.56,29.78
+0.98,514.50,294.00,110.25,7.00,4,0.25,3,28.17,30.10
+0.98,514.50,294.00,110.25,7.00,5,0.25,3,28.63,30.19
+0.90,563.50,318.50,122.50,7.00,2,0.25,3,31.63,36.35
+0.90,563.50,318.50,122.50,7.00,3,0.25,3,32.40,35.10
+0.90,563.50,318.50,122.50,7.00,4,0.25,3,32.68,32.83
+0.90,563.50,318.50,122.50,7.00,5,0.25,3,32.29,32.46
+0.86,588.00,294.00,147.00,7.00,2,0.25,3,28.40,33.52
+0.86,588.00,294.00,147.00,7.00,3,0.25,3,29.40,32.93
+0.86,588.00,294.00,147.00,7.00,4,0.25,3,29.43,28.38
+0.86,588.00,294.00,147.00,7.00,5,0.25,3,29.07,29.82
+0.82,612.50,318.50,147.00,7.00,2,0.25,3,24.70,28.77
+0.82,612.50,318.50,147.00,7.00,3,0.25,3,25.48,27.76
+0.82,612.50,318.50,147.00,7.00,4,0.25,3,25.37,26.95
+0.82,612.50,318.50,147.00,7.00,5,0.25,3,25.17,26.41
+0.79,637.00,343.00,147.00,7.00,2,0.25,3,39.04,45.13
+0.79,637.00,343.00,147.00,7.00,3,0.25,3,38.35,43.66
+0.79,637.00,343.00,147.00,7.00,4,0.25,3,39.81,37.76
+0.79,637.00,343.00,147.00,7.00,5,0.25,3,39.83,36.87
+0.76,661.50,416.50,122.50,7.00,2,0.25,3,35.99,36.07
+0.76,661.50,416.50,122.50,7.00,3,0.25,3,36.59,36.44
+0.76,661.50,416.50,122.50,7.00,4,0.25,3,35.64,37.28
+0.76,661.50,416.50,122.50,7.00,5,0.25,3,36.52,37.29
+0.74,686.00,245.00,220.50,3.50,2,0.25,3,11.80,14.49
+0.74,686.00,245.00,220.50,3.50,3,0.25,3,12.03,13.79
+0.74,686.00,245.00,220.50,3.50,4,0.25,3,11.98,14.72
+0.74,686.00,245.00,220.50,3.50,5,0.25,3,11.69,14.76
+0.71,710.50,269.50,220.50,3.50,2,0.25,3,12.41,14.92
+0.71,710.50,269.50,220.50,3.50,3,0.25,3,12.28,14.74
+0.71,710.50,269.50,220.50,3.50,4,0.25,3,12.10,15.57
+0.71,710.50,269.50,220.50,3.50,5,0.25,3,12.19,14.94
+0.69,735.00,294.00,220.50,3.50,2,0.25,3,12.34,14.92
+0.69,735.00,294.00,220.50,3.50,3,0.25,3,12.46,14.38
+0.69,735.00,294.00,220.50,3.50,4,0.25,3,12.31,15.44
+0.69,735.00,294.00,220.50,3.50,5,0.25,3,12.12,15.17
+0.66,759.50,318.50,220.50,3.50,2,0.25,3,12.97,15.53
+0.66,759.50,318.50,220.50,3.50,3,0.25,3,13.01,15.80
+0.66,759.50,318.50,220.50,3.50,4,0.25,3,12.74,16.14
+0.66,759.50,318.50,220.50,3.50,5,0.25,3,12.84,16.26
+0.64,784.00,343.00,220.50,3.50,2,0.25,3,16.83,19.87
+0.64,784.00,343.00,220.50,3.50,3,0.25,3,16.93,20.03
+0.64,784.00,343.00,220.50,3.50,4,0.25,3,16.66,20.46
+0.64,784.00,343.00,220.50,3.50,5,0.25,3,16.86,20.28
+0.62,808.50,367.50,220.50,3.50,2,0.25,3,13.91,14.89
+0.62,808.50,367.50,220.50,3.50,3,0.25,3,14.34,14.96
+0.62,808.50,367.50,220.50,3.50,4,0.25,3,13.95,14.89
+0.62,808.50,367.50,220.50,3.50,5,0.25,3,13.99,14.35
+0.98,514.50,294.00,110.25,7.00,2,0.25,4,28.70,29.61
+0.98,514.50,294.00,110.25,7.00,3,0.25,4,28.55,29.59
+0.98,514.50,294.00,110.25,7.00,4,0.25,4,28.15,30.19
+0.98,514.50,294.00,110.25,7.00,5,0.25,4,28.62,30.12
+0.90,563.50,318.50,122.50,7.00,2,0.25,4,32.67,32.12
+0.90,563.50,318.50,122.50,7.00,3,0.25,4,31.69,37.12
+0.90,563.50,318.50,122.50,7.00,4,0.25,4,32.07,36.16
+0.90,563.50,318.50,122.50,7.00,5,0.25,4,33.28,33.16
+0.86,588.00,294.00,147.00,7.00,2,0.25,4,29.47,29.45
+0.86,588.00,294.00,147.00,7.00,3,0.25,4,28.42,34.19
+0.86,588.00,294.00,147.00,7.00,4,0.25,4,29.08,33.93
+0.86,588.00,294.00,147.00,7.00,5,0.25,4,29.88,28.31
+0.82,612.50,318.50,147.00,7.00,2,0.25,4,25.66,26.30
+0.82,612.50,318.50,147.00,7.00,3,0.25,4,24.96,29.43
+0.82,612.50,318.50,147.00,7.00,4,0.25,4,25.43,28.76
+0.82,612.50,318.50,147.00,7.00,5,0.25,4,26.00,27.34
+0.79,637.00,343.00,147.00,7.00,2,0.25,4,40.00,36.26
+0.79,637.00,343.00,147.00,7.00,3,0.25,4,38.84,45.48
+0.79,637.00,343.00,147.00,7.00,4,0.25,4,38.33,44.16
+0.79,637.00,343.00,147.00,7.00,5,0.25,4,40.12,37.26
+0.76,661.50,416.50,122.50,7.00,2,0.25,4,36.95,37.20
+0.76,661.50,416.50,122.50,7.00,3,0.25,4,36.45,36.76
+0.76,661.50,416.50,122.50,7.00,4,0.25,4,36.81,37.05
+0.76,661.50,416.50,122.50,7.00,5,0.25,4,36.26,37.51
+0.74,686.00,245.00,220.50,3.50,2,0.25,4,12.32,14.92
+0.74,686.00,245.00,220.50,3.50,3,0.25,4,12.30,15.24
+0.74,686.00,245.00,220.50,3.50,4,0.25,4,12.18,15.03
+0.74,686.00,245.00,220.50,3.50,5,0.25,4,12.43,15.35
+0.71,710.50,269.50,220.50,3.50,2,0.25,4,12.36,14.67
+0.71,710.50,269.50,220.50,3.50,3,0.25,4,12.49,15.09
+0.71,710.50,269.50,220.50,3.50,4,0.25,4,12.17,15.20
+0.71,710.50,269.50,220.50,3.50,5,0.25,4,12.28,15.64
+0.69,735.00,294.00,220.50,3.50,2,0.25,4,12.91,15.37
+0.69,735.00,294.00,220.50,3.50,3,0.25,4,12.95,15.73
+0.69,735.00,294.00,220.50,3.50,4,0.25,4,12.67,15.83
+0.69,735.00,294.00,220.50,3.50,5,0.25,4,12.86,16.13
+0.66,759.50,318.50,220.50,3.50,2,0.25,4,12.95,15.95
+0.66,759.50,318.50,220.50,3.50,3,0.25,4,13.00,15.59
+0.66,759.50,318.50,220.50,3.50,4,0.25,4,12.86,16.17
+0.66,759.50,318.50,220.50,3.50,5,0.25,4,12.92,16.14
+0.64,784.00,343.00,220.50,3.50,2,0.25,4,16.99,19.65
+0.64,784.00,343.00,220.50,3.50,3,0.25,4,16.69,19.76
+0.64,784.00,343.00,220.50,3.50,4,0.25,4,16.56,20.37
+0.64,784.00,343.00,220.50,3.50,5,0.25,4,16.62,19.90
+0.62,808.50,367.50,220.50,3.50,2,0.25,4,14.33,15.41
+0.62,808.50,367.50,220.50,3.50,3,0.25,4,14.61,15.56
+0.62,808.50,367.50,220.50,3.50,4,0.25,4,14.61,15.07
+0.62,808.50,367.50,220.50,3.50,5,0.25,4,14.65,15.38
+0.98,514.50,294.00,110.25,7.00,2,0.25,5,28.69,29.53
+0.98,514.50,294.00,110.25,7.00,3,0.25,5,28.58,29.77
+0.98,514.50,294.00,110.25,7.00,4,0.25,5,28.15,30.00
+0.98,514.50,294.00,110.25,7.00,5,0.25,5,28.61,30.20
+0.90,563.50,318.50,122.50,7.00,2,0.25,5,33.13,32.25
+0.90,563.50,318.50,122.50,7.00,3,0.25,5,32.31,32.00
+0.90,563.50,318.50,122.50,7.00,4,0.25,5,31.53,37.19
+0.90,563.50,318.50,122.50,7.00,5,0.25,5,32.46,35.62
+0.86,588.00,294.00,147.00,7.00,2,0.25,5,29.71,28.02
+0.86,588.00,294.00,147.00,7.00,3,0.25,5,29.09,29.43
+0.86,588.00,294.00,147.00,7.00,4,0.25,5,28.31,34.15
+0.86,588.00,294.00,147.00,7.00,5,0.25,5,29.39,33.47
+0.82,612.50,318.50,147.00,7.00,2,0.25,5,25.70,26.53
+0.82,612.50,318.50,147.00,7.00,3,0.25,5,25.17,26.08
+0.82,612.50,318.50,147.00,7.00,4,0.25,5,24.60,29.31
+0.82,612.50,318.50,147.00,7.00,5,0.25,5,25.49,28.14
+0.79,637.00,343.00,147.00,7.00,2,0.25,5,39.89,37.54
+0.79,637.00,343.00,147.00,7.00,3,0.25,5,39.83,36.66
+0.79,637.00,343.00,147.00,7.00,4,0.25,5,39.01,45.28
+0.79,637.00,343.00,147.00,7.00,5,0.25,5,38.65,43.73
+0.76,661.50,416.50,122.50,7.00,2,0.25,5,35.69,36.93
+0.76,661.50,416.50,122.50,7.00,3,0.25,5,36.64,37.01
+0.76,661.50,416.50,122.50,7.00,4,0.25,5,36.06,35.73
+0.76,661.50,416.50,122.50,7.00,5,0.25,5,36.70,36.15
+0.74,686.00,245.00,220.50,3.50,2,0.25,5,12.12,14.48
+0.74,686.00,245.00,220.50,3.50,3,0.25,5,11.67,14.58
+0.74,686.00,245.00,220.50,3.50,4,0.25,5,11.64,14.81
+0.74,686.00,245.00,220.50,3.50,5,0.25,5,12.02,14.03
+0.71,710.50,269.50,220.50,3.50,2,0.25,5,12.27,15.27
+0.71,710.50,269.50,220.50,3.50,3,0.25,5,12.19,14.71
+0.71,710.50,269.50,220.50,3.50,4,0.25,5,12.25,15.23
+0.71,710.50,269.50,220.50,3.50,5,0.25,5,12.27,14.97
+0.69,735.00,294.00,220.50,3.50,2,0.25,5,12.47,15.14
+0.69,735.00,294.00,220.50,3.50,3,0.25,5,12.12,14.97
+0.69,735.00,294.00,220.50,3.50,4,0.25,5,12.18,15.22
+0.69,735.00,294.00,220.50,3.50,5,0.25,5,12.47,14.60
+0.66,759.50,318.50,220.50,3.50,2,0.25,5,12.93,15.83
+0.66,759.50,318.50,220.50,3.50,3,0.25,5,12.82,16.03
+0.66,759.50,318.50,220.50,3.50,4,0.25,5,12.78,15.80
+0.66,759.50,318.50,220.50,3.50,5,0.25,5,13.02,16.06
+0.64,784.00,343.00,220.50,3.50,2,0.25,5,16.73,20.13
+0.64,784.00,343.00,220.50,3.50,3,0.25,5,16.86,20.01
+0.64,784.00,343.00,220.50,3.50,4,0.25,5,16.76,20.19
+0.64,784.00,343.00,220.50,3.50,5,0.25,5,16.92,20.29
+0.62,808.50,367.50,220.50,3.50,2,0.25,5,13.68,15.19
+0.62,808.50,367.50,220.50,3.50,3,0.25,5,13.99,14.61
+0.62,808.50,367.50,220.50,3.50,4,0.25,5,14.16,14.61
+0.62,808.50,367.50,220.50,3.50,5,0.25,5,13.86,14.75
+0.98,514.50,294.00,110.25,7.00,2,0.40,1,32.26,33.37
+0.98,514.50,294.00,110.25,7.00,3,0.40,1,32.26,33.34
+0.98,514.50,294.00,110.25,7.00,4,0.40,1,32.49,32.83
+0.98,514.50,294.00,110.25,7.00,5,0.40,1,32.53,33.04
+0.90,563.50,318.50,122.50,7.00,2,0.40,1,36.47,39.28
+0.90,563.50,318.50,122.50,7.00,3,0.40,1,37.24,36.38
+0.90,563.50,318.50,122.50,7.00,4,0.40,1,36.66,35.92
+0.90,563.50,318.50,122.50,7.00,5,0.40,1,35.96,40.99
+0.86,588.00,294.00,147.00,7.00,2,0.40,1,31.89,35.99
+0.86,588.00,294.00,147.00,7.00,3,0.40,1,32.39,30.66
+0.86,588.00,294.00,147.00,7.00,4,0.40,1,32.09,31.70
+0.86,588.00,294.00,147.00,7.00,5,0.40,1,31.29,36.73
+0.82,612.50,318.50,147.00,7.00,2,0.40,1,29.22,31.71
+0.82,612.50,318.50,147.00,7.00,3,0.40,1,29.91,29.13
+0.82,612.50,318.50,147.00,7.00,4,0.40,1,29.53,28.99
+0.82,612.50,318.50,147.00,7.00,5,0.40,1,28.65,33.54
+0.79,637.00,343.00,147.00,7.00,2,0.40,1,41.40,45.29
+0.79,637.00,343.00,147.00,7.00,3,0.40,1,42.62,39.07
+0.79,637.00,343.00,147.00,7.00,4,0.40,1,42.50,38.35
+0.79,637.00,343.00,147.00,7.00,5,0.40,1,41.67,46.94
+0.76,661.50,416.50,122.50,7.00,2,0.40,1,40.78,39.55
+0.76,661.50,416.50,122.50,7.00,3,0.40,1,39.97,40.85
+0.76,661.50,416.50,122.50,7.00,4,0.40,1,40.71,40.63
+0.76,661.50,416.50,122.50,7.00,5,0.40,1,40.43,39.48
+0.74,686.00,245.00,220.50,3.50,2,0.40,1,14.52,16.94
+0.74,686.00,245.00,220.50,3.50,3,0.40,1,14.61,17.25
+0.74,686.00,245.00,220.50,3.50,4,0.40,1,14.50,17.03
+0.74,686.00,245.00,220.50,3.50,5,0.40,1,14.55,17.25
+0.71,710.50,269.50,220.50,3.50,2,0.40,1,14.51,17.10
+0.71,710.50,269.50,220.50,3.50,3,0.40,1,14.60,17.51
+0.71,710.50,269.50,220.50,3.50,4,0.40,1,14.50,17.12
+0.71,710.50,269.50,220.50,3.50,5,0.40,1,14.58,17.47
+0.69,735.00,294.00,220.50,3.50,2,0.40,1,14.51,16.50
+0.69,735.00,294.00,220.50,3.50,3,0.40,1,14.70,17.00
+0.69,735.00,294.00,220.50,3.50,4,0.40,1,14.42,16.87
+0.69,735.00,294.00,220.50,3.50,5,0.40,1,14.42,17.20
+0.66,759.50,318.50,220.50,3.50,2,0.40,1,15.23,18.14
+0.66,759.50,318.50,220.50,3.50,3,0.40,1,15.23,18.03
+0.66,759.50,318.50,220.50,3.50,4,0.40,1,15.23,18.14
+0.66,759.50,318.50,220.50,3.50,5,0.40,1,15.23,17.95
+0.64,784.00,343.00,220.50,3.50,2,0.40,1,19.52,22.72
+0.64,784.00,343.00,220.50,3.50,3,0.40,1,19.36,22.73
+0.64,784.00,343.00,220.50,3.50,4,0.40,1,19.48,22.72
+0.64,784.00,343.00,220.50,3.50,5,0.40,1,19.42,22.53
+0.62,808.50,367.50,220.50,3.50,2,0.40,1,15.09,17.20
+0.62,808.50,367.50,220.50,3.50,3,0.40,1,17.17,17.21
+0.62,808.50,367.50,220.50,3.50,4,0.40,1,17.14,17.15
+0.62,808.50,367.50,220.50,3.50,5,0.40,1,17.14,17.20
+0.98,514.50,294.00,110.25,7.00,2,0.40,2,32.82,32.96
+0.98,514.50,294.00,110.25,7.00,3,0.40,2,32.71,33.13
+0.98,514.50,294.00,110.25,7.00,4,0.40,2,32.24,33.94
+0.98,514.50,294.00,110.25,7.00,5,0.40,2,32.72,33.78
+0.90,563.50,318.50,122.50,7.00,2,0.40,2,35.84,38.35
+0.90,563.50,318.50,122.50,7.00,3,0.40,2,36.57,35.39
+0.90,563.50,318.50,122.50,7.00,4,0.40,2,36.06,34.94
+0.90,563.50,318.50,122.50,7.00,5,0.40,2,35.69,40.66
+0.86,588.00,294.00,147.00,7.00,2,0.40,2,32.48,35.48
+0.86,588.00,294.00,147.00,7.00,3,0.40,2,32.74,30.53
+0.86,588.00,294.00,147.00,7.00,4,0.40,2,32.13,32.28
+0.86,588.00,294.00,147.00,7.00,5,0.40,2,31.64,36.86
+0.82,612.50,318.50,147.00,7.00,2,0.40,2,28.95,30.34
+0.82,612.50,318.50,147.00,7.00,3,0.40,2,29.49,27.93
+0.82,612.50,318.50,147.00,7.00,4,0.40,2,28.64,28.95
+0.82,612.50,318.50,147.00,7.00,5,0.40,2,28.01,32.92
+0.79,637.00,343.00,147.00,7.00,2,0.40,2,41.64,45.59
+0.79,637.00,343.00,147.00,7.00,3,0.40,2,43.10,39.41
+0.79,637.00,343.00,147.00,7.00,4,0.40,2,42.74,38.84
+0.79,637.00,343.00,147.00,7.00,5,0.40,2,41.92,48.03
+0.76,661.50,416.50,122.50,7.00,2,0.40,2,40.78,39.48
+0.76,661.50,416.50,122.50,7.00,3,0.40,2,40.15,40.40
+0.76,661.50,416.50,122.50,7.00,4,0.40,2,40.57,40.47
+0.76,661.50,416.50,122.50,7.00,5,0.40,2,40.42,39.70
+0.74,686.00,245.00,220.50,3.50,2,0.40,2,14.54,16.43
+0.74,686.00,245.00,220.50,3.50,3,0.40,2,14.45,16.93
+0.74,686.00,245.00,220.50,3.50,4,0.40,2,14.18,16.99
+0.74,686.00,245.00,220.50,3.50,5,0.40,2,14.50,17.03
+0.71,710.50,269.50,220.50,3.50,2,0.40,2,14.70,16.77
+0.71,710.50,269.50,220.50,3.50,3,0.40,2,14.66,17.37
+0.71,710.50,269.50,220.50,3.50,4,0.40,2,14.40,17.27
+0.71,710.50,269.50,220.50,3.50,5,0.40,2,14.71,17.51
+0.69,735.00,294.00,220.50,3.50,2,0.40,2,14.75,16.44
+0.69,735.00,294.00,220.50,3.50,3,0.40,2,14.71,17.01
+0.69,735.00,294.00,220.50,3.50,4,0.40,2,14.33,17.23
+0.69,735.00,294.00,220.50,3.50,5,0.40,2,14.62,17.22
+0.66,759.50,318.50,220.50,3.50,2,0.40,2,15.34,17.85
+0.66,759.50,318.50,220.50,3.50,3,0.40,2,15.29,17.89
+0.66,759.50,318.50,220.50,3.50,4,0.40,2,15.09,18.36
+0.66,759.50,318.50,220.50,3.50,5,0.40,2,15.30,18.15
+0.64,784.00,343.00,220.50,3.50,2,0.40,2,19.20,21.72
+0.64,784.00,343.00,220.50,3.50,3,0.40,2,18.88,22.07
+0.64,784.00,343.00,220.50,3.50,4,0.40,2,18.90,22.09
+0.64,784.00,343.00,220.50,3.50,5,0.40,2,19.12,21.93
+0.62,808.50,367.50,220.50,3.50,2,0.40,2,16.76,17.36
+0.62,808.50,367.50,220.50,3.50,3,0.40,2,17.23,17.38
+0.62,808.50,367.50,220.50,3.50,4,0.40,2,17.26,16.86
+0.62,808.50,367.50,220.50,3.50,5,0.40,2,17.15,16.99
+0.98,514.50,294.00,110.25,7.00,2,0.40,3,32.82,32.78
+0.98,514.50,294.00,110.25,7.00,3,0.40,3,32.69,33.24
+0.98,514.50,294.00,110.25,7.00,4,0.40,3,32.23,33.86
+0.98,514.50,294.00,110.25,7.00,5,0.40,3,32.75,34.00
+0.90,563.50,318.50,122.50,7.00,2,0.40,3,34.24,37.26
+0.90,563.50,318.50,122.50,7.00,3,0.40,3,34.95,35.04
+0.90,563.50,318.50,122.50,7.00,4,0.40,3,35.05,33.82
+0.90,563.50,318.50,122.50,7.00,5,0.40,3,34.29,33.31
+0.86,588.00,294.00,147.00,7.00,2,0.40,3,31.28,35.22
+0.86,588.00,294.00,147.00,7.00,3,0.40,3,32.12,34.70
+0.86,588.00,294.00,147.00,7.00,4,0.40,3,32.05,30.11
+0.86,588.00,294.00,147.00,7.00,5,0.40,3,31.84,31.60
+0.82,612.50,318.50,147.00,7.00,2,0.40,3,28.67,32.43
+0.82,612.50,318.50,147.00,7.00,3,0.40,3,29.67,30.65
+0.82,612.50,318.50,147.00,7.00,4,0.40,3,29.47,29.77
+0.82,612.50,318.50,147.00,7.00,5,0.40,3,28.91,29.64
+0.79,637.00,343.00,147.00,7.00,2,0.40,3,41.26,46.44
+0.79,637.00,343.00,147.00,7.00,3,0.40,3,41.30,44.18
+0.79,637.00,343.00,147.00,7.00,4,0.40,3,42.49,38.81
+0.79,637.00,343.00,147.00,7.00,5,0.40,3,42.08,38.23
+0.76,661.50,416.50,122.50,7.00,2,0.40,3,39.32,38.17
+0.76,661.50,416.50,122.50,7.00,3,0.40,3,39.84,38.48
+0.76,661.50,416.50,122.50,7.00,4,0.40,3,38.89,39.66
+0.76,661.50,416.50,122.50,7.00,5,0.40,3,39.68,40.10
+0.74,686.00,245.00,220.50,3.50,2,0.40,3,13.97,16.08
+0.74,686.00,245.00,220.50,3.50,3,0.40,3,14.22,15.39
+0.74,686.00,245.00,220.50,3.50,4,0.40,3,14.10,16.57
+0.74,686.00,245.00,220.50,3.50,5,0.40,3,13.78,16.60
+0.71,710.50,269.50,220.50,3.50,2,0.40,3,14.07,16.11
+0.71,710.50,269.50,220.50,3.50,3,0.40,3,14.03,15.47
+0.71,710.50,269.50,220.50,3.50,4,0.40,3,13.94,16.70
+0.71,710.50,269.50,220.50,3.50,5,0.40,3,13.86,16.10
+0.69,735.00,294.00,220.50,3.50,2,0.40,3,14.32,16.35
+0.69,735.00,294.00,220.50,3.50,3,0.40,3,14.56,15.84
+0.69,735.00,294.00,220.50,3.50,4,0.40,3,14.33,16.99
+0.69,735.00,294.00,220.50,3.50,5,0.40,3,14.08,17.02
+0.66,759.50,318.50,220.50,3.50,2,0.40,3,15.16,17.04
+0.66,759.50,318.50,220.50,3.50,3,0.40,3,15.18,17.63
+0.66,759.50,318.50,220.50,3.50,4,0.40,3,14.72,18.10
+0.66,759.50,318.50,220.50,3.50,5,0.40,3,14.90,18.22
+0.64,784.00,343.00,220.50,3.50,2,0.40,3,18.48,20.78
+0.64,784.00,343.00,220.50,3.50,3,0.40,3,18.71,20.72
+0.64,784.00,343.00,220.50,3.50,4,0.40,3,18.48,21.54
+0.64,784.00,343.00,220.50,3.50,5,0.40,3,18.46,21.53
+0.62,808.50,367.50,220.50,3.50,2,0.40,3,16.47,16.90
+0.62,808.50,367.50,220.50,3.50,3,0.40,3,16.35,17.14
+0.62,808.50,367.50,220.50,3.50,4,0.40,3,16.55,16.56
+0.62,808.50,367.50,220.50,3.50,5,0.40,3,16.74,16.00
+0.98,514.50,294.00,110.25,7.00,2,0.40,4,32.85,32.95
+0.98,514.50,294.00,110.25,7.00,3,0.40,4,32.67,33.06
+0.98,514.50,294.00,110.25,7.00,4,0.40,4,32.21,33.95
+0.98,514.50,294.00,110.25,7.00,5,0.40,4,32.74,33.88
+0.90,563.50,318.50,122.50,7.00,2,0.40,4,36.45,33.98
+0.90,563.50,318.50,122.50,7.00,3,0.40,4,35.73,39.92
+0.90,563.50,318.50,122.50,7.00,4,0.40,4,35.40,39.22
+0.90,563.50,318.50,122.50,7.00,5,0.40,4,36.57,36.10
+0.86,588.00,294.00,147.00,7.00,2,0.40,4,32.38,31.53
+0.86,588.00,294.00,147.00,7.00,3,0.40,4,31.66,36.20
+0.86,588.00,294.00,147.00,7.00,4,0.40,4,32.15,36.21
+0.86,588.00,294.00,147.00,7.00,5,0.40,4,32.75,31.00
+0.82,612.50,318.50,147.00,7.00,2,0.40,4,28.93,28.20
+0.82,612.50,318.50,147.00,7.00,3,0.40,4,28.05,32.35
+0.82,612.50,318.50,147.00,7.00,4,0.40,4,28.64,31.14
+0.82,612.50,318.50,147.00,7.00,5,0.40,4,29.52,28.43
+0.79,637.00,343.00,147.00,7.00,2,0.40,4,42.77,38.33
+0.79,637.00,343.00,147.00,7.00,3,0.40,4,41.73,47.59
+0.79,637.00,343.00,147.00,7.00,4,0.40,4,41.32,46.23
+0.79,637.00,343.00,147.00,7.00,5,0.40,4,42.96,39.56
+0.76,661.50,416.50,122.50,7.00,2,0.40,4,40.68,40.36
+0.76,661.50,416.50,122.50,7.00,3,0.40,4,40.40,39.67
+0.76,661.50,416.50,122.50,7.00,4,0.40,4,40.60,39.85
+0.76,661.50,416.50,122.50,7.00,5,0.40,4,40.11,40.77
+0.74,686.00,245.00,220.50,3.50,2,0.40,4,14.37,16.61
+0.74,686.00,245.00,220.50,3.50,3,0.40,4,14.48,16.74
+0.74,686.00,245.00,220.50,3.50,4,0.40,4,14.32,16.90
+0.74,686.00,245.00,220.50,3.50,5,0.40,4,14.44,17.32
+0.71,710.50,269.50,220.50,3.50,2,0.40,4,14.60,16.85
+0.71,710.50,269.50,220.50,3.50,3,0.40,4,14.70,17.20
+0.71,710.50,269.50,220.50,3.50,4,0.40,4,14.47,17.23
+0.71,710.50,269.50,220.50,3.50,5,0.40,4,14.66,17.74
+0.69,735.00,294.00,220.50,3.50,2,0.40,4,14.54,16.81
+0.69,735.00,294.00,220.50,3.50,3,0.40,4,14.62,16.88
+0.69,735.00,294.00,220.50,3.50,4,0.40,4,14.53,16.90
+0.69,735.00,294.00,220.50,3.50,5,0.40,4,14.71,17.39
+0.66,759.50,318.50,220.50,3.50,2,0.40,4,15.34,17.86
+0.66,759.50,318.50,220.50,3.50,3,0.40,4,15.29,17.82
+0.66,759.50,318.50,220.50,3.50,4,0.40,4,15.09,18.36
+0.66,759.50,318.50,220.50,3.50,5,0.40,4,15.30,18.24
+0.64,784.00,343.00,220.50,3.50,2,0.40,4,19.06,21.68
+0.64,784.00,343.00,220.50,3.50,3,0.40,4,19.13,21.54
+0.64,784.00,343.00,220.50,3.50,4,0.40,4,19.00,22.25
+0.64,784.00,343.00,220.50,3.50,5,0.40,4,18.84,22.49
+0.62,808.50,367.50,220.50,3.50,2,0.40,4,16.44,17.10
+0.62,808.50,367.50,220.50,3.50,3,0.40,4,16.90,16.79
+0.62,808.50,367.50,220.50,3.50,4,0.40,4,16.94,16.58
+0.62,808.50,367.50,220.50,3.50,5,0.40,4,16.77,16.79
+0.98,514.50,294.00,110.25,7.00,2,0.40,5,32.84,32.88
+0.98,514.50,294.00,110.25,7.00,3,0.40,5,32.72,33.23
+0.98,514.50,294.00,110.25,7.00,4,0.40,5,32.21,33.76
+0.98,514.50,294.00,110.25,7.00,5,0.40,5,32.73,34.01
+0.90,563.50,318.50,122.50,7.00,2,0.40,5,35.67,33.94
+0.90,563.50,318.50,122.50,7.00,3,0.40,5,35.01,33.14
+0.90,563.50,318.50,122.50,7.00,4,0.40,5,34.72,38.79
+0.90,563.50,318.50,122.50,7.00,5,0.40,5,35.24,37.27
+0.86,588.00,294.00,147.00,7.00,2,0.40,5,32.31,29.69
+0.86,588.00,294.00,147.00,7.00,3,0.40,5,31.81,31.20
+0.86,588.00,294.00,147.00,7.00,4,0.40,5,31.12,36.26
+0.86,588.00,294.00,147.00,7.00,5,0.40,5,32.06,35.71
+0.82,612.50,318.50,147.00,7.00,2,0.40,5,30.00,29.93
+0.82,612.50,318.50,147.00,7.00,3,0.40,5,29.50,29.56
+0.82,612.50,318.50,147.00,7.00,4,0.40,5,29.06,33.84
+0.82,612.50,318.50,147.00,7.00,5,0.40,5,29.92,32.54
+0.79,637.00,343.00,147.00,7.00,2,0.40,5,42.11,38.56
+0.79,637.00,343.00,147.00,7.00,3,0.40,5,41.96,37.70
+0.79,637.00,343.00,147.00,7.00,4,0.40,5,41.09,47.01
+0.79,637.00,343.00,147.00,7.00,5,0.40,5,40.79,44.87
+0.76,661.50,416.50,122.50,7.00,2,0.40,5,38.82,39.37
+0.76,661.50,416.50,122.50,7.00,3,0.40,5,39.72,39.80
+0.76,661.50,416.50,122.50,7.00,4,0.40,5,39.31,37.79
+0.76,661.50,416.50,122.50,7.00,5,0.40,5,39.86,38.18
+0.74,686.00,245.00,220.50,3.50,2,0.40,5,14.41,16.69
+0.74,686.00,245.00,220.50,3.50,3,0.40,5,14.19,16.62
+0.74,686.00,245.00,220.50,3.50,4,0.40,5,14.17,16.94
+0.74,686.00,245.00,220.50,3.50,5,0.40,5,14.39,16.70
+0.71,710.50,269.50,220.50,3.50,2,0.40,5,12.43,15.59
+0.71,710.50,269.50,220.50,3.50,3,0.40,5,12.63,14.58
+0.71,710.50,269.50,220.50,3.50,4,0.40,5,12.76,15.33
+0.71,710.50,269.50,220.50,3.50,5,0.40,5,12.42,15.31
+0.69,735.00,294.00,220.50,3.50,2,0.40,5,14.12,16.63
+0.69,735.00,294.00,220.50,3.50,3,0.40,5,14.28,15.87
+0.69,735.00,294.00,220.50,3.50,4,0.40,5,14.37,16.54
+0.69,735.00,294.00,220.50,3.50,5,0.40,5,14.21,16.74
+0.66,759.50,318.50,220.50,3.50,2,0.40,5,14.96,17.64
+0.66,759.50,318.50,220.50,3.50,3,0.40,5,14.92,17.79
+0.66,759.50,318.50,220.50,3.50,4,0.40,5,14.92,17.55
+0.66,759.50,318.50,220.50,3.50,5,0.40,5,15.16,18.06
+0.64,784.00,343.00,220.50,3.50,2,0.40,5,17.69,20.82
+0.64,784.00,343.00,220.50,3.50,3,0.40,5,18.19,20.21
+0.64,784.00,343.00,220.50,3.50,4,0.40,5,18.16,20.71
+0.64,784.00,343.00,220.50,3.50,5,0.40,5,17.88,21.40
+0.62,808.50,367.50,220.50,3.50,2,0.40,5,16.54,16.88
+0.62,808.50,367.50,220.50,3.50,3,0.40,5,16.44,17.11
+0.62,808.50,367.50,220.50,3.50,4,0.40,5,16.48,16.61
+0.62,808.50,367.50,220.50,3.50,5,0.40,5,16.64,16.03
+0.86,588.0,294.0,150.0,7.0,2.0,0.0,0.0,19.472065,27.32454
+0.86,588.0,294.0,150.0,7.0,2.0,0.0,0.0,19.472065,27.32454
+0.86,589.0,295.0,147.0,7.0,2.0,0.0,0.0,19.472065,27.32454
+0.86,589.0,295.0,147.0,7.0,2.0,0.0,0.0,19.472065,27.32454
+0.86,589.0,295.0,147.0,7.0,2.0,0.0,0.0,19.472065,27.32454
+0.86,589.0,395.0,147.0,7.0,2.0,0.0,0.0,19.499763,27.701612
diff --git a/models/Heat_Cool_Load_Predictor/heat_model_predict.py b/models/Heat_Cool_Load_Predictor/heat_model_predict.py
new file mode 100644
index 00000000..7157326f
--- /dev/null
+++ b/models/Heat_Cool_Load_Predictor/heat_model_predict.py
@@ -0,0 +1,4 @@
+from models.Heat_Cool_Load_Predictor.model import heat_load_prediction
+
+def get_prediction(relative_compactness, surface_area, wall_area, roof_area, overall_height, orientation, glazing_area, glazing_area_distribution):
+ return heat_load_prediction(relative_compactness, surface_area, wall_area, roof_area, overall_height, orientation, glazing_area, glazing_area_distribution)
diff --git a/models/Heat_Cool_Load_Predictor/model.py b/models/Heat_Cool_Load_Predictor/model.py
new file mode 100644
index 00000000..6e790502
--- /dev/null
+++ b/models/Heat_Cool_Load_Predictor/model.py
@@ -0,0 +1,39 @@
+from joblib import load
+
+heat_model = load('models/Heat_Cool_Load_Predictor/saved_models/heat_model.pkl')
+cool_model = load('models/Heat_Cool_Load_Predictor/saved_models/cool_model.pkl')
+
+def heat_load_prediction(relative_compactness, surface_area, wall_area, roof_area, overall_height, orientation, glazing_area, glazing_area_distribution):
+ features = [
+ float(relative_compactness),
+ float(surface_area),
+ float(wall_area),
+ float(roof_area),
+ float(overall_height),
+ float(orientation),
+ float(glazing_area),
+ float(glazing_area_distribution)
+ ]
+
+ heat_prediction = heat_model.predict([features])[0] if heat_model else None
+
+ return heat_prediction
+
+
+def cool_load_prediction(relative_compactness, surface_area, wall_area, roof_area, overall_height, orientation, glazing_area, glazing_area_distribution):
+ features = [
+ float(relative_compactness),
+ float(surface_area),
+ float(wall_area),
+ float(roof_area),
+ float(overall_height),
+ float(orientation),
+ float(glazing_area),
+ float(glazing_area_distribution)
+ ]
+
+ cool_prediction = cool_model.predict([features])[0] if cool_model else None
+
+ return cool_prediction
+
+
diff --git a/models/Heat_Cool_Load_Predictor/notebooks/energy_efficiency.ipynb b/models/Heat_Cool_Load_Predictor/notebooks/energy_efficiency.ipynb
new file mode 100644
index 00000000..37193267
--- /dev/null
+++ b/models/Heat_Cool_Load_Predictor/notebooks/energy_efficiency.ipynb
@@ -0,0 +1,1653 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np \n",
+ "import pandas as pd \n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import warnings\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.preprocessing import StandardScaler\n",
+ "from sklearn.linear_model import LinearRegression\n",
+ "from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error\n",
+ "from sklearn.ensemble import RandomForestRegressor\n",
+ "import xgboost as xgb\n",
+ "import pickle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " X1 | \n",
+ " X2 | \n",
+ " X3 | \n",
+ " X4 | \n",
+ " X5 | \n",
+ " X6 | \n",
+ " X7 | \n",
+ " X8 | \n",
+ " Y1 | \n",
+ " Y2 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.98 | \n",
+ " 514.5 | \n",
+ " 294.0 | \n",
+ " 110.25 | \n",
+ " 7.0 | \n",
+ " 2.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 15.55 | \n",
+ " 21.33 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.98 | \n",
+ " 514.5 | \n",
+ " 294.0 | \n",
+ " 110.25 | \n",
+ " 7.0 | \n",
+ " 3.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 15.55 | \n",
+ " 21.33 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.98 | \n",
+ " 514.5 | \n",
+ " 294.0 | \n",
+ " 110.25 | \n",
+ " 7.0 | \n",
+ " 4.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 15.55 | \n",
+ " 21.33 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.98 | \n",
+ " 514.5 | \n",
+ " 294.0 | \n",
+ " 110.25 | \n",
+ " 7.0 | \n",
+ " 5.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 15.55 | \n",
+ " 21.33 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.90 | \n",
+ " 563.5 | \n",
+ " 318.5 | \n",
+ " 122.50 | \n",
+ " 7.0 | \n",
+ " 2.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 20.84 | \n",
+ " 28.28 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2\n",
+ "0 0.98 514.5 294.0 110.25 7.0 2.0 0.0 0.0 15.55 21.33\n",
+ "1 0.98 514.5 294.0 110.25 7.0 3.0 0.0 0.0 15.55 21.33\n",
+ "2 0.98 514.5 294.0 110.25 7.0 4.0 0.0 0.0 15.55 21.33\n",
+ "3 0.98 514.5 294.0 110.25 7.0 5.0 0.0 0.0 15.55 21.33\n",
+ "4 0.90 563.5 318.5 122.50 7.0 2.0 0.0 0.0 20.84 28.28"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv('../data/energy_efficiency_dataset.csv')\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Relative_Compactness | \n",
+ " Surface_Area | \n",
+ " Wall_Area | \n",
+ " Roof_Area | \n",
+ " Overall_Height | \n",
+ " Orientation | \n",
+ " Glazing_Area | \n",
+ " Glazing_Area_Distribution | \n",
+ " Heating_Load | \n",
+ " Cooling_Load | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.98 | \n",
+ " 514.5 | \n",
+ " 294.0 | \n",
+ " 110.25 | \n",
+ " 7.0 | \n",
+ " 2.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 15.55 | \n",
+ " 21.33 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.98 | \n",
+ " 514.5 | \n",
+ " 294.0 | \n",
+ " 110.25 | \n",
+ " 7.0 | \n",
+ " 3.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 15.55 | \n",
+ " 21.33 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.98 | \n",
+ " 514.5 | \n",
+ " 294.0 | \n",
+ " 110.25 | \n",
+ " 7.0 | \n",
+ " 4.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 15.55 | \n",
+ " 21.33 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.98 | \n",
+ " 514.5 | \n",
+ " 294.0 | \n",
+ " 110.25 | \n",
+ " 7.0 | \n",
+ " 5.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 15.55 | \n",
+ " 21.33 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.90 | \n",
+ " 563.5 | \n",
+ " 318.5 | \n",
+ " 122.50 | \n",
+ " 7.0 | \n",
+ " 2.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 20.84 | \n",
+ " 28.28 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Relative_Compactness Surface_Area Wall_Area Roof_Area Overall_Height \\\n",
+ "0 0.98 514.5 294.0 110.25 7.0 \n",
+ "1 0.98 514.5 294.0 110.25 7.0 \n",
+ "2 0.98 514.5 294.0 110.25 7.0 \n",
+ "3 0.98 514.5 294.0 110.25 7.0 \n",
+ "4 0.90 563.5 318.5 122.50 7.0 \n",
+ "\n",
+ " Orientation Glazing_Area Glazing_Area_Distribution Heating_Load \\\n",
+ "0 2.0 0.0 0.0 15.55 \n",
+ "1 3.0 0.0 0.0 15.55 \n",
+ "2 4.0 0.0 0.0 15.55 \n",
+ "3 5.0 0.0 0.0 15.55 \n",
+ "4 2.0 0.0 0.0 20.84 \n",
+ "\n",
+ " Cooling_Load \n",
+ "0 21.33 \n",
+ "1 21.33 \n",
+ "2 21.33 \n",
+ "3 21.33 \n",
+ "4 28.28 "
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.rename(columns={'X1':'Relative_Compactness','X2':'Surface_Area',\n",
+ " 'X3':'Wall_Area','X4':'Roof_Area','X5':'Overall_Height',\n",
+ " 'X6':'Orientation','X7':'Glazing_Area',\n",
+ " 'X8':'Glazing_Area_Distribution','Y1':'Heating_Load',\n",
+ " 'Y2':'Cooling_Load'}, inplace=True)\n",
+ "df.head() "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Relative_Compactness 0\n",
+ "Surface_Area 0\n",
+ "Wall_Area 0\n",
+ "Roof_Area 0\n",
+ "Overall_Height 0\n",
+ "Orientation 0\n",
+ "Glazing_Area 0\n",
+ "Glazing_Area_Distribution 0\n",
+ "Heating_Load 0\n",
+ "Cooling_Load 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAC64AAAfGCAYAAACtLQITAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzce5yXdZ3//+cM6EDoMFExw2w4oLmIlmm5EYqLJIZ43lWSopICdFXWDt5wxRARSYLMY6ara0A6ZtlW5gESJDNXIreTG5p5Ar1lDBUBSgIK8/ujL59fk6IO8m5A7/fb7XNzPtf1vt7X6xrkvwdXVWtra2sAAAAAAAAAAAAAAKCQ6o4eAAAAAAAAAAAAAACA1zfhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAADuUqqqqTJkypaPHaOP+++/PgQcemG7duqWqqiq/+MUvtsm+ffr0yejRoyvf77777lRVVeXuu+/eJvu31yGHHJJDDjmkQ+4NAAAAAMCOTbgOAAAAAECSZPbs2amqqmrz6dmzZ4YMGZK5c+d29Hiv2YMPPpgpU6Zk6dKl23Tf559/PiNGjMjKlStzySWX5Prrr09TU9MrXnfHHXekqqoqjY2N2bRp0zadabPHHnssp5xySnbfffd06dIltbW1Oeigg3LZZZflueeeK3JPAAAAAAB4KZ07egAAAAAAALYvU6dOTd++fdPa2pqWlpbMnj07RxxxRG699dYcddRRHT3eVnvwwQdz/vnn55BDDkmfPn222b6PPfZYli1blmuvvTZjx4591dc1NzenT58+Wbp0aRYuXJihQ4dus5mS5Pbbb8+IESNSU1OTj3/843nnO9+ZDRs25N57782ECROyZMmSXHPNNdv0ngAAAAAAsCXCdQAAAAAA2hg+fHgOOOCAyvcxY8akvr4+X//613focL2UFStWJEnq6upe9TVr167NLbfckunTp2fWrFlpbm7epuH6E088kZEjR6apqSkLFy5Mr169KudOP/30PProo7n99tu32f0AAAAAAOCVVHf0AAAAAAAAbN/q6urStWvXdO7c9l0oa9euzZlnnpnevXunpqYm/fr1y0UXXZTW1tYkyXPPPZe99tore+21V5577rnKdStXrkyvXr1y4IEHZuPGjUmS0aNHZ5dddsnjjz+eYcOGpVu3bmlsbMzUqVMr+72cn//85xk+fHhqa2uzyy675NBDD82Pf/zjyvnZs2dnxIgRSZIhQ4akqqoqVVVVufvuu19234ULF+bggw9Ot27dUldXl2OPPTYPPfRQ5fzo0aMzePDgJMmIESNSVVWVQw455BXn/c53vpPnnnsuI0aMyMiRI/Ptb38769ate8XrXq2ZM2fm2WefzXXXXdcmWt/sHe94Rz71qU9Vvr/wwgu54IILsscee6SmpiZ9+vTJOeeck/Xr17/sfWbPnp2qqqosXbq0zfG77777Rb/fQw45JO985zvzwAMPZPDgwXnTm96Ud7zjHfnWt76VJPnhD3+YAQMGpGvXrunXr18WLFjQZs8pU6akqqoqjz76aEaPHp26urp07949n/jEJ/LnP/+5zdr58+dn0KBBqauryy677JJ+/frlnHPOeTW/OgAAAAAAChGuAwAAAADQxurVq/OHP/whv//977NkyZKceuqpefbZZ/PRj360sqa1tTXHHHNMLrnkkhx++OG5+OKL069fv0yYMCGf/exnkyRdu3bNnDlz8uijj+Zzn/tc5drTTz89q1evzuzZs9OpU6fK8Y0bN+bwww9PfX19Zs6cmfe+970577zzct55573svEuWLMnBBx+cX/7ylznrrLNy7rnn5oknnsghhxySxYsXJ0n++Z//OWeccUaS5Jxzzsn111+f66+/Pv3799/ivgsWLMiwYcOyYsWKTJkyJZ/97Gdz33335aCDDqqE2qecckoliD7jjDNy/fXXt3nWLWlubs6QIUPS0NCQkSNH5plnnsmtt976ite9Wrfeemt23333HHjgga9q/dixYzN58uS85z3vySWXXJLBgwdn+vTpGTly5DabKUn+9Kc/5aijjsqAAQMyc+bM1NTUZOTIkfnGN76RkSNH5ogjjsgXvvCFrF27NieccEKeeeaZF+3xoQ99KM8880ymT5+eD33oQ5k9e3bOP//8yvklS5bkqKOOyvr16zN16tR86UtfyjHHHJP/+Z//2abPAgAAAABA+3R+5SUAAAAAALyRDB06tM33mpqafPWrX81hhx1WOfa9730vCxcuzLRp0yqh9umnn54RI0bksssuy/jx47PHHntkwIABOeusszJjxoz8y7/8S1paWnLTTTfl0ksvzT/+4z+2uc+6dety+OGH5/LLL0+SnHbaaTn66KMzY8aMnHHGGXnrW9/6kvNOmjQpzz//fO69997svvvuSZKPf/zj6devX84666z88Ic/zO67756DDz44l19+eQ477LBX9Vb0CRMmpEePHlm0aFF69OiRJDnuuOOy//7757zzzsucOXMycODArF+/PhdeeGEOPvjgnHDCCa+474oVK7JgwYJcddVVSZLddtstAwcOTHNzc+Wt8K/FmjVr8tvf/jbHHnvsq1r/y1/+MnPmzMnYsWNz7bXXJvnL775nz5656KKL8oMf/CBDhgx5zXMlydNPP50bb7wxH/7wh5Mkhx12WPbaa6985CMfyX333ZcBAwYkSfr3759hw4blv//7vzN69Og2e+y///657rrrKt//+Mc/5rrrrsuMGTOS/OVt6xs2bMjcuXO3+P8MAAAAAAB/f964DgAAAABAG1deeWXmz5+f+fPn54YbbsiQIUMyduzYfPvb366sueOOO9KpU6fKW8w3O/PMM9Pa2pq5c+dWjk2ZMiX77LNPTjrppJx22mkZPHjwi67bbPz48ZWfq6qqMn78+GzYsCELFix4yfUbN27MnXfemeOOO64SrSdJr1698pGPfCT33ntv1qxZ0+7fwe9+97v84he/yOjRoyvRepLsu+++Oeyww3LHHXe0e8/NbrrpplRXV+f444+vHPvwhz+cuXPn5k9/+tNW77vZ5ufdddddX9X6zc+y+U35m5155plJkttvv/01z7TZLrvs0uYt7v369UtdXV369+9fidaTVH5+/PHHX7THv/3bv7X5fvDBB+ePf/xj5bnr6uqSJLfccks2bdq0zWYHAAAAAOC1Ea4DAAAAANDG+973vgwdOjRDhw7NqFGjcvvtt2fvvfeuRORJsmzZsjQ2Nr4oju7fv3/l/GY777xzvvrVr+aJJ57IM888k1mzZqWqqupF962urm4TnyepvJV96dKlLznr73//+/z5z39Ov379XnSuf//+2bRpU5566qlX//D/z+b5t7TvH/7wh6xdu7bd+ybJDTfckPe973354x//mEcffTSPPvpo9t9//2zYsCE333zzVu3512pra5MkzzzzzKtav2zZslRXV+cd73hHm+MNDQ2pq6tr82f5Wr397W9/0Z999+7d07t37xcdS/KSIf9uu+3W5vub3/zmNmtPPPHEHHTQQRk7dmzq6+szcuTIfPOb3xSxAwAAAAB0MOE6AAAAAAAvq7q6OkOGDMnvfve7PPLII1u1x/e///0kybp167Z6j9eDRx55JPfff3/uvffe7LnnnpXPoEGDkiTNzc2v+R61tbVpbGzMr371q3Zd91L/mGBrr9m4ceNLHu/UqVO7jre2trZ7bdeuXXPPPfdkwYIF+djHPpYHHnggJ554Yg477LAtzgUAAAAAQHnCdQAAAAAAXtELL7yQJHn22WeTJE1NTXn66adf9FbvX//615Xzmz3wwAOZOnVqPvGJT2T//ffP2LFjs3r16hfdY9OmTXn88cfbHPvNb36TJOnTp89LzvW2t70tb3rTm/Lwww+/6Nyvf/3rVFdXV97m3Z4we/P8W9r3rW99a7p16/aq99usubk5O+20U2666abcfPPNbT6f+tSn8qMf/ShPPvlku/f9W0cddVQee+yxLFq06BXXNjU1ZdOmTS/6BwUtLS1ZtWpVmz/Lv7X5beerVq1qc3xbvqV9a1RXV+fQQw/NxRdfnAcffDCf//zns3DhwvzgBz/o0LkAAAAAAN7IhOsAAAAAALys559/PnfeeWd23nnn9O/fP0lyxBFHZOPGjfnyl7/cZu0ll1ySqqqqDB8+vHLt6NGj09jYmMsuuyyzZ89OS0tLPvOZz7zkvf56v9bW1nz5y1/OTjvtlEMPPfQl13fq1Ckf/OAHc8stt2Tp0qWV4y0tLbnxxhszaNCg1NbWJkklNP/byPql9OrVK/vtt1/mzJnTZv2vfvWr3HnnnTniiCNecY+X0tzcnIMPPjgnnnhiTjjhhDafCRMmJEm+/vWvb9Xef+2ss85Kt27dMnbs2LS0tLzo/GOPPZbLLrssSSrPcumll7ZZc/HFFydJjjzyyC3eZ4899kiS3HPPPZVjGzduzDXXXPOa5n8tVq5c+aJj++23X5Jk/fr1f+dpAAAAAADYrHNHDwAAAAAAwPZl7ty5lTenr1ixIjfeeGMeeeSRnH322ZUI/Oijj86QIUPyuc99LkuXLs273/3u3Hnnnbnlllvy6U9/uhI0T5s2Lb/4xS9y1113Zdddd82+++6byZMnZ9KkSTnhhBPaBOBdunTJvHnzctJJJ2XAgAGZO3dubr/99pxzzjl529vetsV5p02blvnz52fQoEE57bTT0rlz5/znf/5n1q9fn5kzZ1bW7bfffunUqVNmzJiR1atXp6amJh/4wAfSs2fPl9z3i1/8YoYPH56BAwdmzJgxee6553LFFVeke/fumTJlSrt/r4sXL86jjz6a8ePHv+T5f/iHf8h73vOeNDc35z/+4z/avf9f22OPPXLjjTfmxBNPTP/+/fPxj38873znO7Nhw4bcd999ufnmmzN69Ogkybvf/e6cdNJJueaaa7Jq1aoMHjw4P/nJTzJnzpwcd9xxGTJkyBbvs88+++T9739/Jk6cmJUrV6ZHjx656aabKm/o7whTp07NPffckyOPPDJNTU1ZsWJFvvKVr+Ttb397Bg0a1GFzAQAAAAC80QnXAQAAAABoY/LkyZWfu3Tpkr322itXXXVVTjnllMrx6urqfO9738vkyZPzjW98I7NmzUqfPn3yxS9+MWeeeWaS5Gc/+1kuvPDCjB8/vk38fPbZZ+eWW27JuHHjsmTJktTV1SX5y9vT582bl1NPPTUTJkzIrrvumvPOO6/NPC9ln332yY9+9KNMnDgx06dPz6ZNmzJgwIDccMMNGTBgQGVdQ0NDrr766kyfPj1jxozJxo0b84Mf/GCL4frQoUMzb968ygw77bRTBg8enBkzZqRv377t/r02Nzcn+Uv0vyVHH310pkyZkgceeCD77rtvu+/x14455pg88MAD+eIXv5hbbrklV111VWpqarLvvvvmS1/6UsaNG1dZ+1//9V/ZfffdM3v27HznO99JQ0NDJk6cmPPOO+9VPdcpp5ySL3zhC6mrq8uYMWMyZMiQHHbYYa9p/q11zDHHZOnSpfnqV7+aP/zhD3nrW9+awYMH5/zzz0/37t07ZCYAAAAAAJKq1tbW1o4eAgAAAACAN7bRo0fnW9/6Vp599tmOHgUAAAAAACiguqMHAAAAAAAAAAAAAADg9U24DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKqmptbW3t6CEAAAAAAAAAAAAAAHj98sZ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFBU544eYGts2rQpTz/9dHbddddUVVV19DgAAAAAAAAAAAAAAG84ra2teeaZZ9LY2Jjq6pd/p/oOGa4//fTT6d27d0ePAQAAAAAAAAAAAADwhvfUU0/l7W9/+8uu2SHD9V133TXJXx6wtra2g6cBAAAAAAAAAAAAAHjjWbNmTXr37l3pu1/ODhmuV1VVJUlqa2uF6wAAAAAAAAAAAAAAHWhz3/1yqv8OcwAAAAAAAAAAAAAA8AYmXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIrq3NEDAMArWbduXZYtW9bRY1BAU1NTunTp0tFjAAAAAAAAAAAAUJhwHYDt3rJlyzJu3LiOHoMCrr322vTr16+jxwAAAAAAAAAAAKAw4ToA272mpqZce+21HT1GccuWLcu0adMyadKkNDU1dfQ4fxdvlOcEAAAAAAAAAAB4oxOuA7Dd69KlyxvqrdxNTU1vqOcFAAAAAAAAAADg9a+6owcAAAAAAAAAAAAAAOD1TbgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUe0K1zdu3Jhzzz03ffv2TdeuXbPHHnvkggsuSGtra2VNa2trJk+enF69eqVr164ZOnRoHnnkkTb7rFy5MqNGjUptbW3q6uoyZsyYPPvss9vmiQAAAAAAAAAAAAAA2K60K1yfMWNGrrrqqnz5y1/OQw89lBkzZmTmzJm54oorKmtmzpyZyy+/PFdffXUWL16cbt26ZdiwYVm3bl1lzahRo7JkyZLMnz8/t912W+65556cfPLJ2+6pAAAAAAAAAAAAAADYbnRuz+L77rsvxx57bI488sgkSZ8+ffL1r389P/nJT5L85W3rl156aSZNmpRjjz02SfK1r30t9fX1+e53v5uRI0fmoYceyrx583L//ffngAMOSJJcccUVOeKII3LRRRelsbFxWz4fAAAAAAAAAAAAAAAdrF1vXD/wwANz11135Te/+U2S5Je//GXuvffeDB8+PEnyxBNPZPny5Rk6dGjlmu7du2fAgAFZtGhRkmTRokWpq6urROtJMnTo0FRXV2fx4sUved/169dnzZo1bT4AAAAAAAAAAAAAAOwY2vXG9bPPPjtr1qzJXnvtlU6dOmXjxo35/Oc/n1GjRiVJli9fniSpr69vc119fX3l3PLly9OzZ8+2Q3TunB49elTW/K3p06fn/PPPb8+oAAAAAAAAAAAAAABsJ9r1xvVvfvObaW5uzo033pif/exnmTNnTi666KLMmTOn1HxJkokTJ2b16tWVz1NPPVX0fgAAAAAAAAAAAAAAbDvteuP6hAkTcvbZZ2fkyJFJkne9611ZtmxZpk+fnpNOOikNDQ1JkpaWlvTq1atyXUtLS/bbb78kSUNDQ1asWNFm3xdeeCErV66sXP+3ampqUlNT055RAQAAAAAAAAAAAADYTrTrjet//vOfU13d9pJOnTpl06ZNSZK+ffumoaEhd911V+X8mjVrsnjx4gwcODBJMnDgwKxatSo//elPK2sWLlyYTZs2ZcCAAVv9IAAAAAAAAAAAAAAAbJ/a9cb1o48+Op///Oez2267ZZ999snPf/7zXHzxxfnkJz+ZJKmqqsqnP/3pTJs2LXvuuWf69u2bc889N42NjTnuuOOSJP3798/hhx+ecePG5eqrr87zzz+f8ePHZ+TIkWlsbNzmDwgAAAAAAAAAAAAAQMdqV7h+xRVX5Nxzz81pp52WFStWpLGxMaecckomT55cWXPWWWdl7dq1Ofnkk7Nq1aoMGjQo8+bNS5cuXSprmpubM378+Bx66KGprq7O8ccfn8svv3zbPRUAAAAAAAAAAAAAANuNqtbW1taOHqK91qxZk+7du2f16tWpra3t6HEAYJt4+OGHM27cuFx77bXp169fR48DAAAAAAAAAAAAL6s9XXf132kmAAAAAAAAAAAAAADeoITrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEV17ugBANh6LS0tWbVqVUePwTaybNmyNv/l9aOuri719fUdPQYAAAAAAAAAAECHqWptbW3t6CHaa82aNenevXtWr16d2trajh4HoEO0tLTko6NGZf2GDR09CvAKanbeOTc0N4vXAQAAAAAAAACA15X2dN3euA6wg1q1alXWb9iQU/dZm8ZuGzt6HGALnl7bKVct+cvfWeE6AAAAAAAAAADwRiVcB9jBNXbbmL61wnUAAAAAAAAAAABg+1Xd0QMAAAAAAAAAAAAAAPD6JlwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQVLvC9T59+qSqqupFn9NPPz1Jsm7dupx++ul5y1vekl122SXHH398Wlpa2uzx5JNP5sgjj8yb3vSm9OzZMxMmTMgLL7yw7Z4IAAAAAAAAAAAAAIDtSrvC9fvvvz+/+93vKp/58+cnSUaMGJEk+cxnPpNbb701N998c374wx/m6aefzr/+679Wrt+4cWOOPPLIbNiwIffdd1/mzJmT2bNnZ/LkydvwkQAAAAAAAAAAAAAA2J60K1x/29veloaGhsrntttuyx577JHBgwdn9erVue6663LxxRfnAx/4QN773vdm1qxZue+++/LjH/84SXLnnXfmwQcfzA033JD99tsvw4cPzwUXXJArr7wyGzZsKPKAAAAAAAAAAAAAAAB0rHaF639tw4YNueGGG/LJT34yVVVV+elPf5rnn38+Q4cOrazZa6+9sttuu2XRokVJkkWLFuVd73pX6uvrK2uGDRuWNWvWZMmSJa/hMQAAAAAAAAAAAAAA2F513toLv/vd72bVqlUZPXp0kmT58uXZeeedU1dX12ZdfX19li9fXlnz19H65vObz23J+vXrs379+sr3NWvWbO3YAAAAAAAAAAAAAAD8nW31G9evu+66DB8+PI2Njdtynpc0ffr0dO/evfLp3bt38XsCAAAAAAAAAAAAALBtbFW4vmzZsixYsCBjx46tHGtoaMiGDRuyatWqNmtbWlrS0NBQWdPS0vKi85vPbcnEiROzevXqyuepp57amrEBAAAAAAAAAAAAAOgAWxWuz5o1Kz179syRRx5ZOfbe9743O+20U+66667KsYcffjhPPvlkBg4cmCQZOHBg/u///i8rVqyorJk/f35qa2uz9957b/F+NTU1qa2tbfMBAAAAAAAAAAAAAGDH0Lm9F2zatCmzZs3KSSedlM6d///Lu3fvnjFjxuSzn/1sevTokdra2vz7v/97Bg4cmPe///1Jkg9+8IPZe++987GPfSwzZ87M8uXLM2nSpJx++umpqanZdk8FAAAAAAAAAAAAAMB2o93h+oIFC/Lkk0/mk5/85IvOXXLJJamurs7xxx+f9evXZ9iwYfnKV75SOd+pU6fcdtttOfXUUzNw4MB069YtJ510UqZOnfrangIAAAAAAAAAAAAAgO1Wu8P1D37wg2ltbX3Jc126dMmVV16ZK6+8covXNzU15Y477mjvbQEAAAAAAAAAAAAA2EFVd/QAAAAAAAAAAAAAAAC8vgnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABTVuaMHAOC1eXqtf4ME2zN/RwEAAAAAAAAAAITrADu8q5bs0tEjAAAAAAAAAAAAALws4TrADu7UfZ5NY7dNHT0GsAVPr632D0wAAAAAAAAAAIA3POE6wA6usdum9K3d2NFjAAAAAAAAAAAAAGxRdUcPAAAAAAAAAAAAAADA65twHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoSrgOAAAAAAAAAAAAAEBRwnUAAAAAAAAAAAAAAIoSrgMAAAAAAAAAAAAAUJRwHQAAAAAAAAAAAACAooTrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARbU7XP/tb3+bj370o3nLW96Srl275l3velf+93//t3K+tbU1kydPTq9evdK1a9cMHTo0jzzySJs9Vq5cmVGjRqW2tjZ1dXUZM2ZMnn322df+NAAAAAAAAAAAAAAAbHfaFa7/6U9/ykEHHZSddtopc+fOzYMPPpgvfelLefOb31xZM3PmzFx++eW5+uqrs3jx4nTr1i3Dhg3LunXrKmtGjRqVJUuWZP78+bnttttyzz335OSTT952TwUAAAAAAAAAAAAAwHajc3sWz5gxI717986sWbMqx/r27Vv5ubW1NZdeemkmTZqUY489Nknyta99LfX19fnud7+bkSNH5qGHHsq8efNy//3354ADDkiSXHHFFTniiCNy0UUXpbGxcVs8FwAAAAAAAAAAAAAA24l2vXH9e9/7Xg444ICMGDEiPXv2zP77759rr722cv6JJ57I8uXLM3To0Mqx7t27Z8CAAVm0aFGSZNGiRamrq6tE60kydOjQVFdXZ/HixS953/Xr12fNmjVtPgAAAAAAAAAAAAAA7BjaFa4//vjjueqqq7Lnnnvm+9//fk499dScccYZmTNnTpJk+fLlSZL6+vo219XX11fOLV++PD179mxzvnPnzunRo0dlzd+aPn16unfvXvn07t27PWMDAAAAAAAAAAAAANCB2hWub9q0Ke95z3ty4YUXZv/998/JJ5+ccePG5eqrry41X5Jk4sSJWb16deXz1FNPFb0fAAAAAAAAAAAAAADbTrvC9V69emXvvfduc6x///558sknkyQNDQ1JkpaWljZrWlpaKucaGhqyYsWKNudfeOGFrFy5srLmb9XU1KS2trbNBwAAAAAAAAAAAACAHUO7wvWDDjooDz/8cJtjv/nNb9LU1JQk6du3bxoaGnLXXXdVzq9ZsyaLFy/OwIEDkyQDBw7MqlWr8tOf/rSyZuHChdm0aVMGDBiw1Q8CAAAAAAAAAAAAAMD2qXN7Fn/mM5/JgQcemAsvvDAf+tCH8pOf/CTXXHNNrrnmmiRJVVVVPv3pT2fatGnZc88907dv35x77rlpbGzMcccdl+Qvb2g//PDDM27cuFx99dV5/vnnM378+IwcOTKNjY3b/AEBAAAAAAAAAAAAAOhY7QrX/+mf/inf+c53MnHixEydOjV9+/bNpZdemlGjRlXWnHXWWVm7dm1OPvnkrFq1KoMGDcq8efPSpUuXyprm5uaMHz8+hx56aKqrq3P88cfn8ssv33ZPBQAAAAAAAAAAAADAdqNd4XqSHHXUUTnqqKO2eL6qqipTp07N1KlTt7imR48eufHGG9t7awAAAAAAAAAAAAAAdkDVHT0AAAAAAAAAAAAAAACvb8J1AAAAAAAAAAAAAACKEq4DAAAAAAAAAAAAAFCUcB0AAAAAAAAAAAAAgKKE6wAAAAAAAAAAAAAAFCVcBwAAAAAAAAAAAACgKOE6AAAAAAAAAAAAAABFCdcBAAAAAAAAAAAAAChKuA4AAAAAAAAAAAAAQFHCdQAAAAAAAAAAAAAAihKuAwAAAAAAAAAAAABQlHAdAAAAAAAAAAAAAICihOsAAAAAAAAAAAAAABQlXAcAAAAAAAAAAAAAoCjhOgAAAAAAAAAAAAAARQnXAQAAAAAAAAAAAAAoqnNHDwDAa/P02k4dPQLwMvwdBQAAAAAAAAAAEK4D7LDq6upSs/POuWpJR08CvJKanXdOXV1dR48BAAAAAAAAAADQYYTrADuo+vr63NDcnFWrVnX0KGwjy5Yty7Rp0zJp0qQ0NTV19DhsQ3V1damvr+/oMQAAAAAAAAAAADqMcB1gB1ZfXy+GfR1qampKv379OnoMAAAAAAAAAAAA2GaqO3oAAAAAAAAAAAAAAABe34TrAAAAAAAAAAAAAAAUJVwHAAAAAAAAAAAAAKAo4ToAAAAAAAAAAAAAAEUJ1wEAAAAAAAAAAAAAKEq4DgAAAAAAAAAAAABAUcJ1AAAAAAAAAAD+P3buL7Tv+t7j+LtpmmS2+yW2aLKx9QdjrDWbRdZx7A+2G9dZJBsDKwzp0V6IsJLJpkykUJz/mOJgskHdRhEVVGRe7EKnaBX0Yo3TdQidsrLtIumoScc4Seagidaeq2Ynx/Xs/Na8/KXt4wFfmnw/3z/vz0XvnvkCAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIKq70wMAwL9y/PjxGh8f7/QYcaf2eD7s9ZRms1l9fX2dHgMAAAAAAAAAAIAw4ToAy974+HjdeOONnR7jQ3PPPfd0eoQPzb59+2rDhg2dHgMAAAAAAAAAAIAw4ToAy16z2ax9+/Z1egwCms1mp0cAAAAAAAAAAADgQyBcB2DZ6+vr81VuAAAAAAAAAAAAOIt1dXoAAAAAAAAAAAAAAADObcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAENVWuH7HHXfUihUrFh0bN25cWD9+/HiNjo7WunXras2aNbV9+/aamppa9IyJiYkaGRmpCy64oC6++OK69dZb67333lua3QAAAAAAAAAAAAAAsOx0t3vDZz/72XrxxRf/8YDufzzi5ptvrl/+8pf11FNPVX9/f33rW9+qq6++un71q19VVdWJEydqZGSkhoaG6sCBA/X222/X9ddfX6tWrarvf//7S7AdAAAAAAAAAAAAAACWm7bD9e7u7hoaGvrA+ZmZmXrooYfqiSeeqCuuuKKqqh5++OG65JJL6tVXX60tW7bUCy+8UG+99Va9+OKLNTg4WJdddlndfffdddttt9Udd9xRPT09Z74jAAAAAAAAAAAAAACWla52b/jDH/5QH//4x+tTn/pU7dixoyYmJqqq6uDBg/Xuu+/W1q1bF67duHFjrV+/vsbGxqqqamxsrC699NIaHBxcuGbbtm01Oztbb7755pnuBQAAAAAAAAAAAACAZaitL65ffvnl9cgjj9SGDRvq7bffrjvvvLO+9KUv1e9+97uanJysnp6eGhgYWHTP4OBgTU5OVlXV5OTkomj91PqptdOZm5urubm5hd9nZ2fbGRsAAAAAAAAAAAAAgA5qK1y/6qqrFn7etGlTXX755dVsNuvnP/95feQjH1ny4U659957684774w9HwAAAAAAAAAAAACAnK4zuXlgYKA+85nP1B//+McaGhqq+fn5mp6eXnTN1NRUDQ0NVVXV0NBQTU1NfWD91Nrp7N69u2ZmZhaOI0eOnMnYAAAAAAAAAAAAAAB8iM4oXH/nnXfqT3/6U33sYx+rzZs316pVq+qll15aWD98+HBNTExUq9WqqqpWq1WHDh2qY8eOLVyzf//+ajQaNTw8fNr39Pb2VqPRWHQAAAAAAAAAAAAAAHB26G7n4u9+97v1ta99rZrNZh09erS+973v1cqVK+vaa6+t/v7+uuGGG+qWW26ptWvXVqPRqJtuuqlarVZt2bKlqqquvPLKGh4eruuuu67uv//+mpycrD179tTo6Gj19vZGNggAAAAAAAAAAAAAQGe1Fa7/+c9/rmuvvbb++te/1kUXXVRf/OIX69VXX62LLrqoqqoeeOCB6urqqu3bt9fc3Fxt27atHnzwwYX7V65cWc8880zt2rWrWq1WrV69unbu3Fl33XXX0u4KAAAAAAAAAAAAAIBlY8XJkydPdnqIds3OzlZ/f3/NzMxUo9Ho9DgAAAAAAAAAAAAAAOeddrrurg9pJgAAAAAAAAAAAAAAzlPCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKK6Oz0AAACcTY4fP17j4+OdHoOAZrNZfX19nR4DAAAAAAAAAOCcJFwHAIA2jI+P14033tjpMQjYt29fbdiwodNjAAAAAAAAAACck4TrAADQhmazWfv27ev0GB+K8fHxuueee2rPnj3VbDY7PU7c+bBHAAAAAAAAAIBOEa4DAEAb+vr6zruvcjebzfNuzwAAAAAAAAAALK2uTg8AAAAAAAAAAAAAAMC5TbgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAEDUGYXr9913X61YsaK+853vLJw7fvx4jY6O1rp162rNmjW1ffv2mpqaWnTfxMREjYyM1AUXXFAXX3xx3XrrrfXee++dySgAAAAAAAAAAAAAACxT/3a4/vrrr9fPfvaz2rRp06LzN998cz399NP11FNP1SuvvFJHjx6tq6++emH9xIkTNTIyUvPz83XgwIF69NFH65FHHqnbb7/9398FAAAAAAAAAAAAAADL1r8Vrr/zzju1Y8eO2rdvX1144YUL52dmZuqhhx6qH/7wh3XFFVfU5s2b6+GHH64DBw7Uq6++WlVVL7zwQr311lv12GOP1WWXXVZXXXVV3X333bV3796an59fml0BAAAAAAAAAAAAALBs/Fvh+ujoaI2MjNTWrVsXnT948GC9++67i85v3Lix1q9fX2NjY1VVNTY2VpdeemkNDg4uXLNt27aanZ2tN99885++b25urmZnZxcdAAAAAAAAAAAAAACcHbrbveHJJ5+s3/72t/X6669/YG1ycrJ6enpqYGBg0fnBwcGanJxcuOZ/Ruun1k+t/TP33ntv3Xnnne2OCgAAAAAAAAAAAADAMtDWF9ePHDlS3/72t+vxxx+vvr6+1EwfsHv37pqZmVk4jhw58qG9GwAAAAAAAAAAAACAM9NWuH7w4ME6duxYff7zn6/u7u7q7u6uV155pX784x9Xd3d3DQ4O1vz8fE1PTy+6b2pqqoaGhqqqamhoqKampj6wfmrtn+nt7a1Go7HoAAAAAAAAAAAAAADg7NBWuP7lL3+5Dh06VG+88cbC8YUvfKF27Nix8POqVavqpZdeWrjn8OHDNTExUa1Wq6qqWq1WHTp0qI4dO7Zwzf79+6vRaNTw8PASbQsAAAAAAAAAAAAAgOWiu52LP/rRj9bnPve5RedWr15d69atWzh/ww031C233FJr166tRqNRN910U7VardqyZUtVVV155ZU1PDxc1113Xd1///01OTlZe/bsqdHR0ert7V2ibQEAAAAAAAAAAAAAsFy0Fa7/fzzwwAPV1dVV27dvr7m5udq2bVs9+OCDC+srV66sZ555pnbt2lWtVqtWr15dO3furLvuumupRwEAAAAAAAAAAAAAYBk443D95ZdfXvR7X19f7d27t/bu3Xvae5rNZj377LNn+moAAAAAAAAAAAAAAM4CXZ0eAAAAAAAAAAAAAACAc5twHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAoro7PQAAAOeGqampmp6e7vQYLKHx8fFF/3JuGBgYqMHBwU6PAQAAAAAAAACcZ1acPHnyZKeHaNfs7Gz19/fXzMxMNRqNTo8DAHDem5qaqh3/uaPm5+Y7PQrwL/T09tTjjz0uXgcAAAAAAAAAzlg7XbcvrgMAcMamp6drfm6+3v+P9+tk46z7u0g4b6yYXVHzr83X9PS0cB0AAAAAAAAA+FAJ1wEAWDInGyerLuz0FMDpnCx/WAIAAAAAAAAAdEZXpwcAAAAAAAAAAAAAAODcJlwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACiujs9AAAA55DZTg8A/J/8HwUAAAAAAAAAOkS4DgDAkln52spOjwAAAAAAAAAAACxDwnUAAJbMif84UdXo9BTAac36AxMAAAAAAAAAoDOE6wAALJ1GVV3Y6SEAAAAAAAAAAIDlpqvTAwAAAAAAAAAAAAAAcG4TrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUW2F6z/5yU9q06ZN1Wg0qtFoVKvVqueee25h/fjx4zU6Olrr1q2rNWvW1Pbt22tqamrRMyYmJmpkZKQuuOCCuvjii+vWW2+t9957b2l2AwAAAAAAAAAAAADAstNWuP6JT3yi7rvvvjp48GD95je/qSuuuKK+/vWv15tvvllVVTfffHM9/fTT9dRTT9Urr7xSR48erauvvnrh/hMnTtTIyEjNz8/XgQMH6tFHH61HHnmkbr/99qXdFQAAAAAAAAAAAAAAy8aKkydPnjyTB6xdu7Z+8IMf1DXXXFMXXXRRPfHEE3XNNddUVdXvf//7uuSSS2psbKy2bNlSzz33XH31q1+to0eP1uDgYFVV/fSnP63bbrut/vKXv1RPT8//652zs7PV399fMzMz1Wg0zmR8AACWwOHDh+vGG2+sE1tPVF3Y6WmA0/qvqpUvrqx9+/bVhg0bOj0NAAAAAAAAAHCWa6frbuuL6//TiRMn6sknn6y///3v1Wq16uDBg/Xuu+/W1q1bF67ZuHFjrV+/vsbGxqqqamxsrC699NKFaL2qatu2bTU7O7vw1fZ/Zm5urmZnZxcdAAAAAAAAAAAAAACcHdoO1w8dOlRr1qyp3t7e+uY3v1m/+MUvanh4uCYnJ6unp6cGBgYWXT84OFiTk5NVVTU5ObkoWj+1fmrtdO69997q7+9fOD75yU+2OzYAAAAAAAAAAAAAAB3Sdri+YcOGeuONN+rXv/517dq1q3bu3FlvvfVWYrYFu3fvrpmZmYXjyJEj0fcBAAAAAAAAAAAAALB0utu9oaenpz796U9XVdXmzZvr9ddfrx/96Ef1jW98o+bn52t6enrRV9enpqZqaGioqqqGhobqtddeW/S8qamphbXT6e3trd7e3nZHBQAAAAAAAAAAAABgGWj7i+v/2/vvv19zc3O1efPmWrVqVb300ksLa4cPH66JiYlqtVpVVdVqterQoUN17NixhWv2799fjUajhoeHz3QUAAAAAAAAAAAAAACWoba+uL579+666qqrav369fW3v/2tnnjiiXr55Zfr+eefr/7+/rrhhhvqlltuqbVr11aj0aibbrqpWq1WbdmypaqqrrzyyhoeHq7rrruu7r///pqcnKw9e/bU6OioL6oDAAAAAAAAAAAAAJyj2grXjx07Vtdff329/fbb1d/fX5s2barnn3++vvKVr1RV1QMPPFBdXV21ffv2mpubq23bttWDDz64cP/KlSvrmWeeqV27dlWr1arVq1fXzp0766677lraXQEAAAAAAAAAAAAAsGy0Fa4/9NBD/+d6X19f7d27t/bu3Xvaa5rNZj377LPtvBYAAAAAAAAAAAAAgLNYV6cHAAAAAAAAAAAAAADg3CZcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgKjuTg8AAMC5Y8XsijpZJzs9BnAaK2ZXdHoEAAAAAAAAAOA8JVwHAOCMDQwMVE9vT82/Nt/pUYB/oae3pwYGBjo9BgAAAAAAAABwnhGuAwBwxgYHB+vxxx6v6enpTo/CEhofH6977rmn9uzZU81ms9PjsEQGBgZqcHCw02MAAAAAAAAAAOcZ4ToAAEticHBQDHuOajabtWHDhk6PAQAAAAAAAADAWayr0wMAAAAAAAAAAAAAAHBuE64DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAAAAAAAAooTrAAAAAAAAAAAAAABECdcBAAAAAAAAAAAAAIgSrgMAAAAAAAAAAAAAECVcBwAAAAAAAAAAAAAgSrgOAAAAAAAAAAAAAECUcB0AAAAAAAAAAAAAgCjhOgAAAAAAAAAAAAAAUcJ1AAAAAAAAAAAAAACihOsAAAAAAAAAAAAAAEQJ1wEAAAAAAAAAAAAAiBKuAwAAAAAAAAAAAAAQJVwHAAAAAAAAAAAAACBKuA4AAAAAAAAAAAAAQJRwHQAAAAAAAAAAAACAKOE6AAAAAAAAAAAAAABRwnUAAAAAAAAAAAAAAKKE6wAAAAAAAAAAAAAARAnXAQAAAAAAAAAAAACIEq4DAAAAAAAAAAAAABAlXAcAAAAAAAAAAAAAIEq4DgAAAAAAAAAAAABAlHAdAAAAAAAAAAAAAIAo4ToAAAAAAAAAAAAAAFHCdQAAAAAAAPhv9u4/tu667vv4e91oO+baw+Da2XYzjtze0kEUSEBg0Rh/TGYk3vcidyLJNJMsJbfZSBB/kkz81WQJJkog0yXNLkfCiEYT5BYNYQ4DueIgukSjIPPHjWfzghYRTguVtmPr/YdZc03HoKPvfk7PeTyShvScb+nrm6zfnHTPfQ8AAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkGpR6QEAADCfjI+PR71eLz1jThw/z3Y531qtFt3d3aVnAAAAAAAAAAC0JOE6AADMQL1ej/7+/tIz5tTAwEDpCXNicHAw+vr6Ss8AAAAAAAAAAGhJwnUAAJiBWq0Wg4ODpWeQoFarlZ4AAAAAAAAAANCyhOsAADAD3d3d7soNAAAAAAAAAAAz1FF6AAAAAAAAAAAAAAAArU24DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAqkWlBwAAAECG4eHhaDQapWekmpiYiKGhodIzSLJixYro6uoqPSNVpVKJarVaegYAAAAAAAAwB4TrAAAAtJzh4eH42MaNMTE5WXoKcApdnZ1x95494nUAAAAAAABoA8J1AAAAWk6j0YiJycn43xHxb6XHJDoSEY3SI0hTiYgzSo9I9NeI+MHkZDQaDeE6AAAAAAAAtAHhOgAAAC3r3yJiVSwoPSNVrfQAOG1TpQcAAAAAAAAAc6ij9AAAAAAAAAAAAAAAAFqbcB0AAAAAAAAAAAAAgFTCdQAAAAAAAAAAAAAAUgnXAQAAAAAAAAAAAABIJVwHAAAAAAAAAAAAACCVcB0AAAAAAAAAAAAAgFTCdQAAAAAAAAAAAAAAUgnXAQAAAAAAAAAAAABIJVwHAAAAAAAAAAAAACCVcB0AAAAAAAAAAAAAgFTCdQAAAAAAAAAAAAAAUgnXAQAAAAAAAAAAAABIJVwHAAAAAAAAAAAAACCVcB0AAAAAAAAAAAAAgFTCdQAAAAAAAAAAAAAAUgnXAQAAAAAAAAAAAABIJVwHAAAAAAAAAAAAACCVcB0AAAAAAAAAAAAAgFTCdQAAAAAAAAAAAAAAUgnXAQAAAAAAAAAAAABIJVwHAAAAAAAAAAAAACCVcB0AAAAAAAAAAAAAgFTCdQAAAAAAAAAAAAAAUgnXAQAAAAAAAAAAAABIJVwHAAAAAAAAAAAAACCVcB0AAAAAAAAAAAAAgFTCdQAAAAAAAAAAAAAAUgnXAQAAAAAAAAAAAABIJVwHAAAAAAAAAAAAACCVcB0AAAAAAAAAAAAAgFTCdQAAAAAAAAAAAAAAUgnXAQAAAAAAAAAAAABIJVwHAAAAAAAAAAAAACCVcB0AAAAAAAAAAAAAgFQzCte3b98e73jHO2Lp0qWxfPny2LBhQxw8ePCEY8bHx2PLli1x9tlnx5ve9Ka49tprY3h4+IRjDh06FNdcc02ceeaZsXz58vjsZz8br7zyyhs/GwAAAAAAAAAAAAAAms6MwvWHH344tmzZEo8++mjs3bs3jhw5EldffXWMjY1NH/OpT30qfvSjH8X3v//9ePjhh+Ppp5+Oj3zkI9PPHz16NK655pqYnJyMn//853HXXXfF7t2749Zbb529swIAAAAAAAAAAAAAoGksmsnBDzzwwAmf7969O5YvXx4HDhyId7/73TEyMhK7du2Ke+65J973vvdFRMR3vvOduPDCC+PRRx+Nq666Kh588MF44okn4qc//WlUq9W49NJL42tf+1p8/vOfjy9/+cvR2dk5e2cHAAAAAAAAAAAAAEBxM7rj+j8bGRmJiIhly5ZFRMSBAwfiyJEjsW7duulj1qxZE+edd17s378/IiL2798fb3/726NarU4fs379+hgdHY3HH3/8jcwBAAAAAAAAAAAAAKAJzeiO6//VsWPH4qabbop3vvOd8ba3vS0iIoaGhqKzszMqlcoJx1ar1RgaGpo+5r9G68efP/7cyUxMTMTExMT056Ojo6c7GwAAAAAAAAAAAACAOXbad1zfsmVL/Pa3v43vfve7s7nnpLZv3x69vb3TH6tXr07/ngAAAAAAAAAAAAAAzI7TCte3bt0a999/f/zsZz+Lc889d/rxFStWxOTkZDQajROOHx4ejhUrVkwfMzw8/C/PH3/uZG655ZYYGRmZ/jh8+PDpzAYAAAAAAAAAAAAAoIAZhetTU1OxdevWuPfee+Ohhx6K888//4TnL7vssjjjjDNi3759048dPHgwDh06FGvXro2IiLVr18ZvfvObePbZZ6eP2bt3b/T09MRFF1100u/b1dUVPT09J3wAAAAAAAAAAAAAADA/LJrJwVu2bIl77rkn7rvvvli6dGkMDQ1FRERvb28sXrw4ent7Y/PmzXHzzTfHsmXLoqenJ2688cZYu3ZtXHXVVRERcfXVV8dFF10UH//4x+O2226LoaGh2LZtW2zZsiW6urpm/wwBAAAAAAAAAAAAAChqRuH6t7/97YiIeM973nPC49/5znfiE5/4REREfPOb34yOjo649tprY2JiItavXx/f+ta3po9duHBh3H///fHJT34y1q5dG0uWLIlNmzbFV7/61Td2JgAAAAAAAAAAAAAANKUZhetTU1OveUx3d3fs2LEjduzY8arH1Gq1+MlPfjKTbw0AAAAAAAAAAAAAwDzVUXoAAAAAAAAAAAAAAACtTbgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApFpUegAAAABk+X1E/DWmSs8ATuKF0gMAAAAAAACAOSVcBwAAoOVUKpVY2NER+44dKz0FOIWFHR1RqVRKzwAAAAAAAADmgHAdAACAllOtVuPbO3fGoUOHSk9hljzzzDOxa9eu2Lx5c6xcubL0HGbJeeedF9VqtfQMAAAAAAAAYA4I1wEAAGhJa9asiTVr1pSewSw5ePBg7Nq1K6666qro6+srPQcAAAAAAACAGeooPQAAAAAAAAAAAAAAgNYmXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAINWi0gMAAACA0zM+Ph71er30jDlx/Dzb5XwjImq1WnR3d5eeAQAAAAAAADArhOsAAAAwT9Xr9ejv7y89Y04NDAyUnjBnBgcHo6+vr/QMAAAAAAAAgFkhXAcAAIB5qlarxeDgYOkZJKnVaqUnAAAAAAAAAMwa4ToAAADMU93d3e7IDQAAAAAAAMC80FF6AAAAAAAAAAAAAAAArU24DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAqhmH64888kh8+MMfjlWrVsWCBQvihz/84QnPT01Nxa233horV66MxYsXx7p16+IPf/jDCcc8//zzsXHjxujp6YlKpRKbN2+Ol1566Q2dCAAAAAAAAAAAAAAAzWnG4frY2FhccsklsWPHjpM+f9ttt8Udd9wRO3fujMceeyyWLFkS69evj/Hx8eljNm7cGI8//njs3bs37r///njkkUfihhtuOP2zAAAAAAAAAAAAAACgaS2YmpqaOu0vXrAg7r333tiwYUNE/ONu66tWrYpPf/rT8ZnPfCYiIkZGRqJarcbu3bvjuuuui9/97ndx0UUXxS9+8Yu4/PLLIyLigQceiA996EPxl7/8JVatWvWa33d0dDR6e3tjZGQkenp6Tnc+AAAAAAAAAAAAAACnaSZd94zvuH4qTz31VAwNDcW6deumH+vt7Y0rr7wy9u/fHxER+/fvj0qlMh2tR0SsW7cuOjo64rHHHjvp/3diYiJGR0dP+AAAAAAAAAAAAAAAYH6Y1XB9aGgoIiKq1eoJj1er1ennhoaGYvny5Sc8v2jRoli2bNn0Mf9s+/bt0dvbO/2xevXq2ZwNAAAAAAAAAAAAAECiWQ3Xs9xyyy0xMjIy/XH48OHSkwAAAAAAAAAAAAAAeJ1mNVxfsWJFREQMDw+f8Pjw8PD0cytWrIhnn332hOdfeeWVeP7556eP+WddXV3R09NzwgcAAAAAAAAAAAAAAPPDrIbr559/fqxYsSL27ds3/djo6Gg89thjsXbt2oiIWLt2bTQajThw4MD0MQ899FAcO3YsrrzyytmcAwAAAAAAAAAAAABAE1g00y946aWX4o9//OP050899VT86le/imXLlsV5550XN910UwwMDMRb3/rWOP/88+OLX/xirFq1KjZs2BARERdeeGF88IMfjP7+/ti5c2ccOXIktm7dGtddd12sWrVq1k4MAAAAAAAAAAAAAIDmMONw/Ze//GW8973vnf785ptvjoiITZs2xe7du+Nzn/tcjI2NxQ033BCNRiPe9a53xQMPPBDd3d3TX7Nnz57YunVrvP/974+Ojo649tpr44477piF0wEAAAAAAAAAAAAAoNksmJqamio9YqZGR0ejt7c3RkZGoqenp/QcAAAAAAAAAAAAAIC2M5Ouu2OONgEAAAAAAAAAAAAA0KaE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKmE6wAAAAAAAAAAAAAApBKuAwAAAAAAAAAAAACQSrgOAAAAAAAAAAAAAEAq4ToAAAAAAAAAAAAAAKkWlR4AAAAAAAAAAAAAAM1gfHw86vV66RkkqNVq0d3dXXpGWxOuAwAAAAAAAAAAAEBE1Ov16O/vLz2DBIODg9HX11d6RlsTrgMAAAAAAAAAAABA/OOu3IODg6VnpKvX6zEwMBDbtm2LWq1Wes6caJfzbGbCdQAAAAAAAAAAAACIiO7u7ra6K3etVmur86WsjtIDAAAAAAAAAAAAAABobcJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSLSo9AAAAAAAAAAAAgPY0Pj4e9Xq99AyS1Gq16O7uLj0DgCYhXAcAAAAAAAAAAKCIer0e/f39pWeQZHBwMPr6+krPAKBJCNcBAAAAAAAAAAAoolarxeDgYOkZc6Jer8fAwEBs27YtarVa6Tlzol3OE4DXR7gOAAAAAAAAAABAEd3d3W13R+5ardZ25wwAEREdpQcAAAAAAAAAAAAAANDahOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKQSrgMAAAAAAAAAAAAAkEq4DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACpFpUeAAAAAAAAAAAAAEBzGx4ejkajUXoGs6Rer5/wX1pHpVKJarVaesZJCdcBAAAAAAAAAAAAeFXDw8Ox8WMfi8mJidJTmGUDAwOlJzDLOru6Ys/ddzdlvC5cBwAAAAAAAAAAaELubtxa3N24NTXznY1nU6PRiMmJifj71f8rji47u/Qc4FUsfP5vEQ/eF41GoymvTcJ1AAAAAAAAAACAJjM8PBwf+9jGmJiYLD2FWebuxq2lq6sz7r57T1MGohmOLjs7ji1fWXoGME8J1wEAAAAAAAAAAJpMo9GIiYnJ+MDVk3HWWVOl5wAn8cILC2Lvg9G0dzYGaDbCdQAAAAAAAAAAgCZ11llTsXy5cB0AmP86Sg8AAAAAAAAAAAAAAKC1CdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAIJVwHQAAAAAAAAAAAACAVMJ1AAAAAAAAAAAAAABSCdcBAAAAAAAAAAAAAEglXAcAAAAAAAAAAAAAINWi0gMAAAAAAAAAAAAAaH4dzz9XegJwCs3+MypcBwAAAAAAAAAAAOA1LXnw/5aeAMxjwnUAAAAAAAAAAAAAXtPY1f8zji07p/QM4FV0PP9cU/8DE+E6AAAAAAAAAAAAAK/p2LJz4tjylaVnAPNUR+kBAAAAAAAAAAAAAAC0NuE6AAAAAAAAAAAAAACphOsAAAAAAAAAAAAAAKRaVHoAAAAAAAAAAAAAJ/fC8wtKTwBehZ9PgJkRrgMAAAAAAAAAADSpvXs7S08AAJgVwnUAAAAAAAAAAIAm9YEPTMZZy6ZKzwBO4oXnF/jHJQAzIFwHAAAAAAAAAABoUmctm4rly4XrAMD811F6AAAAAAAAAAAAAAAArU24DgAAAAAAAAAAAABAKuE6AAAAAAAAAAAAAACpFpUeAAAAAAAAAAAAAEDzW/j830pPAE6h2X9GhesAAAAAAAAAAAAAvKpKpRKdXV0RD95XegrwGjq7uqJSqZSecVLCdQAAAAAAAAAAAABeVbVajT133x2NRqP0FGZJvV6PgYGB2LZtW9RqtdJzmEWVSiWq1WrpGSclXAcAAAAAAAAAAADglKrVatPGsJy+Wq0WfX19pWfQJjpKDwAAAAAAAAAAAAAAoLW54zoAAAAAAAAAAECTeuGFBaUnAK/CzyfAzAjXAQAAAAAAAAAAmkylUomurs7Y+2DpJcCpdHV1RqVSKT0DYF4QrgMAAAAAAAAAADSZarUad9+9JxqNRukpzJJ6vR4DAwOxbdu2qNVqpecwSyqVSlSr1dIzAOYF4ToAAAAAAAAAAEATqlargtgWVKvVoq+vr/QMAJhzwnUAAAAAAAAAAAAAiIjx8fGo1+ulZ6Q7fo7tcK7H1Wq16O7uLj2jrQnXAQAAAAAAAAAAACD+EXL39/eXnjFnBgYGSk+YM4ODg97xojDhOgAAAAAAAAAAAADEP+7KPTg4WHoGCWq1WukJbU+4DgAAAAAAAAAAAAAR0d3d7a7ckKSj9AAAAAAAAAAAAAAAAFqbcB0AAAAAAAAAAAAAgFTCdQAAAAAAAAAAAAAAUgnXAQAAAAAAAAAAAABItaj0AAAAAABodU8++WQcOnSo9Ix0R44cieeee670DBKcc845ccYZZ5Seke68886LNWvWlJ4BAAAAAAAtSbgOAAAAAImGh4fjk//nk3H02NHSU4DXsLBjYXz3e9+NarVaegoAAAAAALQc4ToAAAAAJGo0GnH02NF42397Vyzp7C09J9WxqaPx8uRLpWeQYHHnm6JjwcLSM1KNTY7Eb//zP6LRaAjXAQAAYA6Nj49HvV4vPWNOHD/PdjnfiIharRbd3d2lZwDQJITrAAAAADAHVvb+9zhriRgWmtULY8Px2//8j9IzAAAAoO3U6/Xo7+8vPWNODQwMlJ4wZwYHB6Ovr6/0DACahHAdAAAAAABoOe10x7524259APDGea3UurxWYj6q1WoxODhYegZJarVa6QkANBHhOgAAAAAA0HLa8Y597cLd+gDgjfNaqXV5rcR81N3d7c8tALQJ4ToAAAAAALSR4eHhaDQapWekm5iYiG3btpWeMSeeeeaZ2LVrV2zevDlWrlxZek66iYmJOHjwYOkZ6SqVSlSr1dIzANqO10qtx2ul1uS1EgDA/CRcBwAAAIA5MDr+t9IT0h099kqMTYyUnkGCJV29sbCjtX+d3A4/oxH/CLE2btwYk5OTpaeQYNeuXaUnMIs6Oztjz549giyAOeS1UmvzWqm1eK0EADA/tfbfNAAAAABAYZVKJbo6u+Kx//fj0lOA19DV2RWVSqX0jFSNRiMmJyfjf/QuicWLOkrPAV7Fy68ciz+OjEWj0RBjAcyh46+Vzj///Fi8eHHpOcCrePnll+Opp57yWgkAYB4SrgMAAABAomq1Gnfvubtt3mp+aGio9AwSrFixIrq6ukrPSNdObzX/x5Gx0hMAAJrWU089VXoCAABASxKuAwAAAECyarXaNjHsxRdfXHoC8Dq8/eyl8aYz/BUBNKuXjrwSv/nbi6VnALStiy66KJYsWVJ6BvAqxsbG4oknnig9AwCA01Dst9I7duyIr3/96zE0NBSXXHJJ3HnnnXHFFVeUmgMAAAAAAG1kQekB6Y5OTcXLrxwtPYMEixctjIULWv3PcKufH0BzW7JkSSxdurT0DAAAgJZTJFz/3ve+FzfffHPs3Lkzrrzyyrj99ttj/fr1cfDgwVi+fHmJSQAAAAAA0PIqlUp0dnbGb/42WnoK8Bo6OzujUqmUngEAAAAAs6ZIuP6Nb3wj+vv74/rrr4+IiJ07d8aPf/zj+Pd///f4whe+UGLS6/L73/8+/vznP5eeke7vf/97/OlPfyo9gwRvectb4swzzyw9I92b3/zmuOCCC0rPAAAAAICmU61WY8+ePdFoNEpPSTcxMRFDQ0OlZ5BgxYoV0dXVVXpGukqlEtVqtfQMgLY0NjZWegJwCn5GAQDmrzkP1ycnJ+PAgQNxyy23TD/W0dER69ati/3798/1nBm5884749e//nXpGcBruOSSS+LOO+8sPQMAAAAAmlK1Wm2bGPbiiy8uPQF4Hdrh5lFHjhyJ5557rvQMkpxzzjlxxhlnlJ6Rql1uHHX83WmeeOKJ0lOA1+DdaQAA5qc5D9efe+65OHr06L/8UrxarcaTTz550q+ZmJiIiYmJ6c9HR8u8hemNN97Y8r80i3DH9VbWTndcBwAAAAAA5gc3j4Lm1y43jvLuNK3pmWeeiV27dsXmzZtj5cqVpeek8+40AAA0szkP10/H9u3b4ytf+UrpGXHBBRe0xb8iBwAAAAAAgLnSDjePOnz4cNx1112lZ5Bk06ZNsXr16tIzUrXTjaPa5d1pDh48GAMDA6VnzKldu3aVnjAnBgcHo6+vr/QMAAA4qQVTU1NTc/kNJycn48wzz4wf/OAHsWHDhunHN23aFI1GI+67775/+ZqT3XF99erVMTIyEj09PXMxGwAAAAAAAOC0jI+PR71eLz2DJLVaLbq7u0vPgBlxXWpdrkkAAMy10dHR6O3tfV1d95zfcb2zszMuu+yy2Ldv33S4fuzYsdi3b19s3br1pF/T1dXVFm9jBAAAAAAAALSe7u5ud78FmorrEgAAUMKch+sRETfffHNs2rQpLr/88rjiiivi9ttvj7Gxsbj++utLzAEAAAAAAAAAAAAAIFGRcP2jH/1o/PWvf41bb701hoaG4tJLL40HHnggqtVqiTkAAAAAAAAAAAAAACRaMDU1NVV6xEyNjo5Gb29vjIyMRE9PT+k5AAAAAAAAAAAAAABtZyZdd8ccbQIAAAAAAAAAAAAAoE0J1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASCVcBwAAAAAAAAAAAAAglXAdAAAAAAAAAAAAAIBUwnUAAAAAAAAAAAAAAFIJ1wEAAAAAAAAAAAAASLWo9IDTMTU1FRERo6OjhZcAAAAAAAAAAAAAALSn4z338b77VOZluP7iiy9GRMTq1asLLwEAAAAAAAAAAAAAaG8vvvhi9Pb2nvKYBVOvJ29vMseOHYunn346li5dGgsWLCg9h3lsdHQ0Vq9eHYcPH46enp7Sc4A255oENBvXJaCZuCYBzcQ1CWg2rktAM3FNApqN6xLQTFyTgGbimsRsmZqaihdffDFWrVoVHR0dpzx2Xt5xvaOjI84999zSM2ghPT09LrxA03BNApqN6xLQTFyTgGbimgQ0G9cloJm4JgHNxnUJaCauSUAzcU1iNrzWndaPO3XWDgAAAAAAAAAAAAAAb5BwHQAAAAAAAAAAAACAVMJ12lpXV1d86Utfiq6urtJTAFyTgKbjugQ0E9ckoJm4JgHNxnUJaCauSUCzcV0CmolrEtBMXJMoYcHU1NRU6REAAAAAAAAAAAAAALQud1wHAAAAAAAAAAAA/j97dxke1dX9ffw7cSQkuGvx0uJarLg7CQ5BE1wTJFCkaHBPkCDFIRAIENxdgrZoS3EIEghEiMzzgidzJ5W7vf8FpiS/z5uWM+fMtea6yure66y9t4iIyEelxnURERERERERERERERERERERERERERER+ajUuC4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiH5Ua10VERERERERERERERERERERERERERETko1LjuoiIiIiIiIiIiIiIiIiIiIiIiEgiZTQazR2CiIgIoMZ1ERERERERERERkc9KbGysuUMQEREREREREZHPwL59+wAwGAxqXhcRszp79izv3r0zdxjyL6DGdZFEQANLEREREREREZGkw8LifVk3NDTUzJGISFKjhTMiIiIiIiKfjzlz5uDq6sqSJUsANa+LiPl4eXlRpkwZdu/eTVRUlLnDETNT47rIZy42NhaDwQDA48ePzRyNiPzbxX+5GBMTY8ZIRCSpiCt+xS+CqSAmIiIi8n+zf/9+1q9fD0CfPn3w8vLS3E5EPpq4uduNGzc4duwYDx48MC2cERH5N1CNSUTkvT9bXKg8KSJVq1alYsWKLF26FB8fH0DN6yJiHkOGDKF58+a4uLiwa9cu7byexBmM+j+RyGcrNjbW9KJgwoQJHDhwgFmzZlG4cGEzRyYi/0bxc4aPjw+nTp0CoHLlynTs2NGcoYlIIhU/77x8+RI7Ozvs7OwwGAwJPhMR+ZSUf0Tkc/X8+XO6du1KcHAw6dOnZ9euXZw6dYqvvvrK3KGJSCLm5+dH586dSZMmDQ8fPmTGjBk4OTmRNm1ac4cmIklc/Lnd7du3sba2xsrKiixZspg5MhGRT8toNJo2ups9ezbXrl0jIiKC8ePHkzlzZjNHJyLmFB0djZWVFXfu3GHSpEn89NNPdOnShQ4dOgAJ84eIyMcUERGBnZ0dAC1btuT48eMsXLiQWrVqYWtra+boxBz0plbkMxZXkHN3d2fu3Ll07txZyVxE/lRczvDw8GDkyJGkTp2aiIgIZs6cyeDBg80cnYgkNvFfHk6dOpUmTZpQo0YNWrduzbt377CwsNBuDiLyycXPTYGBgcyfPx9/f39u375t5shERP5a2rRpmThxIs+ePcPf359x48aZmtY1rhKRDykup/z666+MGzeOiRMnsmfPHoYOHYq7uzs+Pj4EBwebOUoRScriz+3GjBmDk5MTFSpUoGPHjqxdu9bM0YmIfDrxT2cfPXo0o0ePJiQkhGPHjlG6dGkOHTqk+aJIEhUbG4uVlRUAly9fBuDHH39k3LhxrFixAtDO6yLyacTGxpqa1teuXUu9evV49OgRAwYMYM+ePURFRZk5QjEHNa6LfOb27NnDunXr2Lx5M61btyZPnjy8fv2as2fPEhkZae7wRORfZtmyZWzevJmAgACmTp1K48aN+fHHH9m4cSOurq7mDk9EEpG4l4fDhw9n6tSpODs706tXL06dOkXVqlV5/vy5CmIi8kkZjcYEC/l69OjB4sWLmTJlCt27d+f06dOm+0RE/m3icpOVlRX58uWjRo0abN++nfXr1wPvXzTGxMSYM0QRSUQMBgP79+9n8+bNlCtXjm7duvHFF18wevRoRo4cyaRJk1i8eDHPnj0zd6gikkTFze2+++475s6dy7hx49iwYQOOjo64uLiwbNky8wYoIvKJxOXDp0+fcu/ePQIDA1m9ejU//fQTpUqVwsnJiYMHD6reJZIExeWHoUOH0q1bN/Lnz8/gwYNJliwZc+fOZcmSJYCa10Xk44vLR56envTq1QuAiRMnkj17dlxcXNi1a5ea15MgNa6LfGZ+O2B88OABKVKkoGzZsly6dImxY8dSqlQpypUrR5cuXdS8LiIJvHr1ihYtWlC6dGn8/f1xdXVl4sSJdOrUibVr1zJo0CBzhygiicjOnTvZvn07fn5+9OzZE3t7e54/f86tW7eoVKmSmtdF5JOK231q5syZrFmzhjVr1nD+/Hnq16/P0aNH6datG0eOHFFeEpF/jdjYWGJjY4H/5LC8efOybds2Jk+eTLp06Zg7d66ped3S0hKAkJAQs8QrIonL5s2bGThwIIcPH+bly5em6+7u7owYMYJp06Yxa9Ysnj9/bsYoRSQpO3bsGDt37sTPz4969erx+vVrdu3aRaVKlejduzcrV640d4giIp+Er68vuXPnJigoiJQpUwLvG8S2bNlChQoVaN26tXZeF0mibt26hZ+fH97e3gwcOBAPDw9Wr15Nnjx5mD17NqtWrQL+U3cSEflYHj58yNq1a5k5cyYuLi54eHhw4MABKlSoQOfOndm1a5d6HJMYNa6LfEbiH/X16NEjAEqVKsXjx4+pWLEidevW5c6dOwwfPpwDBw6wevVq066BIpL0/FEBql+/fvTo0YPHjx8zatQohg0bxsCBA2ndujV2dnb4+PgwYcIEM0QrIomRhYUFLVu2pEKFCuzcuZPOnTszadIkAgMDefDgAY0bN+bp06cqiInIJ/PixQuOHDnCd999R4UKFdi+fTuTJ0+md+/epEuXjt69e3P69GnlJRH5V7CwsDDtRrN8+XImTpzI3LlziYqKonjx4gwcOJDMmTOzYMEC04vGOnXq4O3tbc6wRSSRmDNnDiNHjuSnn37Cz8+PsLAw02fu7u707t3bdLy8iIg55M6dmzp16lC+fHn27NlDx44dmTp1KsuWLaNw4cJ07tyZefPmmTtMEZGPrlGjRlSqVImLFy8SHBwMYFoEvXnzZipWrEi1atUICgoyZ5giYgapUqUiLCyMV69ema4VKVKE7777jidPnjBx4kRmz55txghFJCmJjIwkXbp0ALx79w6A9evXky5dOoYPH87WrVuJjo42Z4jyCRmMWlYp8lmIjY01vaycPHky58+fZ8SIERQpUoQjR46wbt06qlatStWqVcmQIQMvX76kXr16zJo1izJlypg5ehH51OLnjNevXxMVFUWqVKmwtrYGYN++fXTv3p09e/aQJ08eLl68yIQJE2jevDktWrQwPSsi8ncZjcY/bPS8e/cuGTJkoE6dOlSpUoUxY8bw8uVLatasyfnz52nZsiXr1q0zQ8QiklQFBQXh6OhIaGgoDRs2xN3dnV69ejF9+nQGDx5MxowZ2b59OyVKlDB3qCKSRPXp04fjx49z7tw5AAYOHMiKFSvIlSsXISEhpEmThiNHjmBra8vJkyeZN28ehw4dInny5BiNRq5cuWKa+4mI/B1x87m4GpK9vT02NjYA9O7dm8WLF7Nw4UKcnZ1JliyZ6bnnz5+TNm1ac4UtIklI/Hp3fKGhodjb29O2bVsyZ87M5MmTsbS0pEOHDly+fJmMGTOyc+dOLU4WkUTjz/JhSEgI9erV49mzZ2zbto0CBQokqNkPGzaM77//3nRSl4gkPr99T2c0GgkODqZhw4ZUrVqVsWPHYmNjY7qnYcOG/Pzzz9SoUYOZM2dqvCQiH8yf9Q2ULVuWTJky4e/vD0B0dDQxMTE0b96cAwcOULVqVbZv3/6pwxUzUVeayGcibgI6ZMgQpk2bRosWLUiZMiUWFhZUqVKF+fPn4+TkhKOjIyEhIbRv3x6DwUCpUqXMHLmIfGpGo9GUM8aNG4ezszOFCxemX79+rF69GoDUqVMD8MMPP/DLL78wbNgwbG1tadmyJRYWFsTExJgtfhH5/MQ/FebHH3/k6tWrXL58GYAcOXLw8OFD7ty5Q/Xq1YH3eSp//vycPn2aNWvWmC1uEUnc4naW+q3ixYuTO3du9u/fb9qFDyBTpkw0bNiQQYMGUbRo0U8ZqoiISUxMDFWqVCEsLIw6derw8uVLHj16xIEDBzh06BDLli0jMjKSYsWKERkZSbly5Rg+fDjz58+nV69eXL16FWtra+1MIyJ/W9zLxK1bt9KkSROKFSuGs7Mz48aNA2Du3Ll07doVV1dXNm7cmGDn9TRp0pgrbBFJQuI3aR47dgw/Pz8OHDhAcHAw9vb2hISEcP78eezs7LC0tOTNmzeEh4czatQoU9O69nETkcQgfj7cs2cPK1asYPfu3dy+fRtHR0d27dpFmjRpaNSoEdeuXUuQ/yZOnIilpaXe/4kkUvHf08XtYmwwGMiQIQM9evTAy8uLhQsX8vbtWwDCwsJInjw5Q4cONTWta7wkIh9C/HwE/8lJACNHjuTatWu4uroCYGVlhbW1NY6OjgQFBbFt27ZPHq+Yj3ZcF/mMBAQE0KtXL/z8/ChZsiRGo5G3b99y/fp1SpYsSWRkJOvWrWPRokVERkZy7NgxrK2t/3TltYgkbiNHjmTBggX4+Phga2vL5MmTefDgAQcPHiRlypRMnDiRNWvWYDQayZIliyln/NnqRxGRPxI/Z3h6erJjxw6ePXtGhgwZqFChArNnzyY6OpqSJUuSKlUq3N3dmTFjBjExMRw4cMC0WEY7vYjIhxR/DuTt7c3Vq1cJDg6mdu3aNG/eHHt7e6ZMmcLcuXMJDAykYMGCNGvWjBIlSjBq1CgA5SYRMZuoqCh2797NoEGDSJYsGRkzZmTVqlWkTZsWo9HIuXPn6NKlC9HR0Zw/fx5bW9sEzyt/ich/E/dKKH7tJzAwkMaNGzNy5EjSpUvHxYsX2bt3L1WqVGHx4sUADBgwgFmzZrFq1Spat25tlthFJGnz8PBgy5YtGAwGsmXLxuPHj9m2bRu5c+fGw8ODtWvX4uTkxKlTpwgPD+fkyZNYWlqq3i0iiY67uzvLly8nY8aM3L17l6+//hoXFxdcXFwIDQ2ldu3ahISEsG7dOr766itzhysiH1n8Wvj8+fM5duwY7969o3LlynTr1g07OzumTZuGh4cHjRs3xsHBgRs3bhAaGkpQUBAWFhbqKRKRDyJ+Lpk5cyZnz57l5s2b9O3bl3r16pEiRQp8fX2ZNGkSadKkoVSpUly4cIFXr15x9epV0yI71baTBv1fR+Qz8vjxYxwdHSlZsiQ//vgjEyZMoESJElSuXJkuXbpgMBhwdHSkbt26HD9+3LTDlgaYIknPzz//zM6dO1m/fj3NmjUjefLknD17lhEjRpA9e3ZSp07N2LFj2bdvHytXruTEiROmnKEivoj8L+JyxsSJE1mwYAGzZ8/m7NmzVKxYkblz53L27FmsrKyYNWsWb968YdiwYVhaWrJ3715TMUyTTxH50OLmQO7u7qYGrJQpUzJhwgR69uxJbGws5cuXp0CBAnz77bd89dVX3Lhxg+HDhwPvG7qUm0TkU4vb+c7a2poaNWowZcoUbGxsCAoKwtHREXg/9ipZsiRLly7F1taWrFmzEhUVleB7lL9E5L8JDw9PUPuJjIzkhx9+oHfv3nh6euLq6srkyZMZPnw4hw8fZurUqQDMmDEDDw8Pihcvbq7QRSQJW7BgAcuWLWP58uVcu3aNatWq8eOPP5pO/Gvfvj1OTk6cOHGCbNmycfz4cVPTg+rdIvK5i3+q4OrVq1m+fDl+fn4EBQWxf/9+ChUqxLx581izZg329vbs2LGD6OhoJkyYYMaoReRTiauFDx06lNGjR5MvXz5Sp06Nr68vvXr1IiIigkGDBrFp0yYyZcrEs2fPKFy4MGfPnlXTuoh8UHG5ZPjw4UyaNIkcOXJQo0YN3NzcmDRpEs+ePaN79+5s2bKFwoUL8+bNG4oWLcrly5extLRU30ASox3XRf6l/mgHiCNHjtC2bVvy5MnDnTt3qFq1KqVLlyZv3rzUrVuXM2fOUKJECdNzWoUkknT8dkJ59+5datSowalTpzh06BDt27fHy8sLV1dXwsPDWb9+PVWqVCFXrlymZ5QzROR/EX+sEhkZibOzM61bt8bZ2Zlt27bRvn17pkyZQvfu3U05KjY2lrt375IzZ04MBgPR0dFYWVmZ+ZeISGJ14MABunfvzqpVqyhTpgxbt27F2dmZhQsX0rFjRwDOnj3L+fPnCQ0NpV+/flhZWWlMJCJmd+vWLfLmzUt4eDh79+6ld+/e5M2bl3379pnuMRqNnDx5koULF7J06VLlLRH5W2bNmsWaNWs4fvw48J8XipUqVSJPnjwsX77cdO/r16/p06cP0dHRrFy5Uo0MIvJJ/bbe3b17d3Lnzs2wYcPYunUrbdu2ZcaMGXTt2pXw8HAAkiVLRkREBLa2tqo7iUiiMHnyZDw8PBJcGzZsGBcvXmTHjh2maz/++COjRo3C2tqaVatWYWFhwZs3b0iWLJnmiiJJxA8//MC4ceNYtWoVpUqVYvPmzbRq1YqsWbNSunRpli9fjp2dHe/evcPGxsb0nMZLIvKhrVu3juHDh7N+/XpKlizJ+fPnKVWqFGnSpMHZ2Rl3d3dy5sz5u+eUj5IeVRpF/oViY2NNjWDXrl3j2rVr3L59m0qVKjF//nzy5MnDhAkTmDhxIr169aJgwYKUKVMGa2vrBM3umoiKJB1xRXwPDw/mzZvH69evsbW1Zc6cOXTu3JnJkyfj6uoKvC9g+fv78/DhwwTfoZwhIn9X/LHKL7/8gsFg4MqVKzg4OLB7927atGnDpEmT6N69O1FRUUyZMoV9+/ZhYWFBrly5MBgMxMbGavIpIh9U3E7FcUJCQnBwcKBMmTJs3LiRdu3aMWPGDDp27Mjr1685cOAAxYsXp3v37gwaNEhN6yJiNvF3zzt8+DD58+dn//79JEuWjJo1azJv3jzu379P7dq1TfcZDAbKly/P8uXLTbuJioj8lTJlypia0ONyT1RUFBUqVOD58+fcvn3bdG+qVKkoVKgQly9fJiwszFwhi0gSZDQaTfXu8+fPExERQWRkJA4ODgQEBNC2bVu8vLzo2rUrMTExrFq1ilWrVvHu3Tvs7OwwGAwYjUbVnUTks7ZhwwbOnj37u7mevb09ISEhhISEmK4VLlyY5s2bs2nTJu7fvw9AypQpNVcUSUKioqJo1KgRpUqVwt/fn65duzJlyhR69erFrl276NmzJxEREQma1jVeEpEPLTY2FhsbG/r370/JkiXZunUr1apVY9WqVUybNo0FCxYwd+5c08lZ8SkfJT1qXBf5l4lfkBs5ciRt27alVq1atGzZkpEjR9KgQQOWLl1KmzZtSJ8+PSEhIfTu3RsbGxuKFCli5uhF5FOLf3DK4cOHWbRoEaVKlaJIkSLUrVuX0aNH0717d3r27AnA27dv+e6774iIiKBcuXLmCltEPnPxjx0cNmwYz58/p3r16ixdupSWLVsydepU02KZx48fc+zYsd8tltFufSLyocU1nC9YsICrV68SGxtLlixZ2Lp1Ky4uLgkW8h05coTNmzfz6NGjP/wOEZFPJf5uot7e3hw5cgSApk2bsmvXLuzs7KhRowZTp07l119/pW7dun/4PcpfIvJ3lC9fnnz58nH8+HGKFi3Ks2fPsLa2pnbt2pw8eZI5c+Zw69Yt0/137twhT548WFtbmzFqEUlK4p/wN3jwYNzc3Hj8+DEZM2Zk5syZtGvXznSyKMCLFy/YuHEjISEhCRqxfnuisYjI56Z+/fqsW7cOS0tLtm/fbrpeuHBhgoKC2Lx5c4Km9GzZslGkSJHf1d01VxRJfOL3B8T9u4uLC/369ePZs2eMHTsWDw8P+vXrh7OzMw4ODvj5+TF27NgE36Pxkoj8U3E5KO6fFhYWlC5dmubNm/P48WO+//57PD09ad26NU2bNiVTpkzMmDGDgwcPmjFq+bfQUgWRf5m4weGECROYP38+mzdvJm/evIwfP57x48fTvHlzihUrRnh4OBs3bmTp0qWEhoZy4sQJ0045agQTSTricsb8+fN59+4dgwcPpmzZssD7xS+PHz9m1qxZxMTE8O7dO65cucKTJ08ICgpSzhCR/1n8l4dnz54lMDAQb29vMmfOTPXq1Wnfvj21atWiWbNmADx79gxXV1dCQ0Np06aNOUMXkUQs/nhmzpw59O/fn2vXrlGxYkVcXV0JCAhg0aJFdOnSBYCIiAjmzp1LunTpyJo1qzlDFxEx5a9hw4axfPlyJkyYwIQJEzh06BCNGjViy5Yt1K1bl5o1azJt2jTatWvHgAEDmDFjhpkjF5HPQdw4Kf5cDiB58uRYWlpSo0YN9uzZQ7Vq1Vi0aBGurq5cvXqV5MmTY29vz9atWzl69Ci2trZm/BUikpTE5aqHDx9y9epVJk+eTK5cuRg3bhwHDx4kLCyMypUr8+LFC8LDw+natSshISH079/fvIGLiHxA0dHRJE+eHIBz587RrVs36tSpw9KlS2nSpAn9+/enR48ehIaGUr58eTJlysT333+Pg4ODal0iiVz8Wnh0dDTv3r0z5Yts2bJx/PhxgoODqV+/PgChoaGUK1cOJycnmjZtara4RSTxiZ+PwsLCsLKywtbWlmzZsgHw448/8ubNG0qUKAHAy5cvadGiBeXLl8fJyclsccu/hxrXRf6FwsLCOH36NN7e3lSuXJlt27axevVqFi5cSLFixXj37h22trYYDAa+/fZbhg8fjpWVFdHR0To6QyQJevXqFStXruTUqVN07twZeN9cam9vz9KlSylUqBDHjx/HysqKMmXKMG7cOOUMEfk/iXt56OXlxe3btylVqhSlS5cGwMnJiefPnzNs2DCaN2+OwWAgJiaGsLAwTp06ZTqWVDu8iMiHFlcYO378ODY2Nqxdu5Z8+fIB749VbtGiBQcPHiRjxozExsYyd+5cHj9+zLZt20xHyGt3GRH5lCIjIxM0gT548AB/f3+8vLxo27YtAO3bt2fUqFE0bdqUgIAAatSoQbVq1QgICNDpWSLyt1lYWHD37l2uX79OzZo1WbVqFbt27WLFihUsWLAAd3d3qlatyoEDB2jatCnp0qXjyJEjnD59mjRp0nDixAm+/PJLc/8MEUlipk+fjq+vL+nSpaNAgQIA2NrasnHjRmrVqkWTJk0IDQ0ld+7cxMTEcPToUaysrFR3EpFE4c2bN6RMmRKAY8eO8c033+Dh4cGKFSvo0qULS5YsYeLEidjZ2TF16lTevn1LpkyZSJkyJUePHsVgMGjTKpFEKv7f7SlTpnD8+HF+/PFHWrVqRfXq1alSpQrp06cnefLkLF26FBcXF4YMGUKqVKlo1qyZ6b2dxksi8k/9Nh8FBgYSERFBjhw5mDZtGlmzZiUiIoKnT59y+vRpYmJimDVrFrGxscyePRtA+UgwGOOfISIi/wqvX7/m66+/ZsmSJcTExNC8eXPT0Yfv3r1j2rRp1KxZk1KlSpmeUUIXSXriN1ndunWLYcOGcfDgQQ4dOkThwoUTDBZ/2xihnCEi/8SQIUOYNm0aRYoUYc+ePWTMmNH02Z49e7h69Sr37t3jyy+/pEOHDlosIyIfXVBQECVLlgRg2bJldOjQAXg/5jl8+DC9e/cmPDycdOnSkTNnTlavXo21tbXGRCLyyVWvXp3KlSvz3Xffma7dvn2br776ijVr1tC4ceME1xs0aMD9+/fx9/enWrVqpnme8peI/BWj0UhMTAwNGjTg+fPn1K5dm0mTJjF37lxcXV0xGo0cP34cd3d3QkJCOHjwIOnTpzflF+UZEfkU/mgh8enTp3FycuLFixccPXqUr7/+2nRfTEwMAQEBvHjxguzZs/Ptt99iaWmpupOIJAobN25k06ZNrFixAnd3d1asWMG9e/eIjo5m2bJlLFmyhNKlS7N48WIALl26xJs3b3j37h2VK1fGwsJC+VAkCRgxYgTe3t7069ePsLAwtm7dSrZs2XB1daVp06aMGzeOFStWEB4eTo4cOTh06BDW1tbawEVEPjhPT0+8vb1xd3cnIiKCjRs38vr1a1avXk358uX5/vvvmTVrFg4ODmTIkEH5SBJQ47qImf3RiueoqCjc3Nx4+/YtO3bswMvLi+7duwNw9+5devbsSevWrU27cIlI0nHgwAEiIyOpU6eO6VrcoO6XX36hW7duXL9+naNHj5IzZ05TgUoDPxH5EOI3LkydOhV3d3emTJmCq6uraReYv3pORORDiT+XioiIYM2aNQwaNAhnZ2cWLFgA/GecFBYWxvPnz7GzsyNdunQYDAa9yBMRszh58iTFixfH1tY2QR5q0KAByZMnZ/78+aRLl850v7OzM1evXuX27ducOHGCYsWKmSlyEfmcffnll/z0008MGjQILy8v0/X4zetv375lz549pE+f3oyRikhS89uaUdw878KFC9StW5eSJUuycuVKUqdO/af1JdWdRCSxOH78OBUrVqRIkSLcu3ePw4cP89VXXwEQGhqKr6/v75rX41M+FEn8fvrpJ5o2bcrcuXOpUaMGAGfPnmXy5MmEhoaybNky7O3tCQ4O5smTJ5QuXVqLWkTko7h79y61a9dm/PjxNGvWzHS9du3a3Lhxg2vXrmFra8uPP/6IpaUl+fLlUz6SBHQ+kIgZxW+0+OWXX7h37x4A1tbWVKxYkQ0bNvDtt9/SokULAJ4/f46bmxuhoaG0atXKbHGLiHkEBQVRvXp16tevj5ubGwsWLCA2NtbUkJ47d24WLVpEvnz5qFSpEr/++qua1kXkH1m1ahVTpkzh5s2bREdHm3awAhg8eDAjR45k6NChrFy5krdv35qe++3aWBXLReRDun79OpGRkQkWANvZ2dG6dWsmT57M4sWLGT16NICpQT158uRkz56d9OnTm45MVmFMRMyhXLly2NraMnnyZNq1a0dYWBgA9evX5+7du0yfPp3Q0FAAwsLCiIqKYvz48VSpUoVZs2bx7t273421RET+zLt37wgLC8Pa2povvviCc+fOsWPHDmJjY4H3Y6UKFSowZcoUIiMjadKkiekzEZGPbdmyZdSsWZNDhw5x584dANM8r1ixYgQEBHDq1Cm6dOlCSEiIqb6kupOIJEYxMTFUqFABZ2dnrly5QsWKFcmRI4fpc3t7e1xcXOjatSvnz5+nZcuWv/sO5UORxM/W1pbXr18TExNjulaqVCmGDh3K6dOnOXLkCClSpCBXrlyULVvWdGqfauEi8qGFh4cTHBxMzpw5gfc1KIBNmzYBMH36dAAKFy5MgQIFsLCw0Ls5SUD/JYiYUVwBbsSIEfzwww9YW1uTO3dutm3bRqdOnXj58iVjxoyhWbNmWFpaEhkZydu3bzl9+rSOaxVJgjJmzIiLiwu1atXi5s2bbNiwgRkzZjB8+HCKFy9O0aJFyZ07NytXrqRdu3bkzZuXe/fukSlTJnOHLiKfmdjYWB49ekT79u1JnTo1N2/eJDg4mClTppAxY0YcHBwAGDNmDNHR0fTr1w+DwUC7du1ImTKlFsuIyEfj5+dHixYtKF68OGPGjCFXrlwUKVIEeN+83q5dO4xGIz179sTCwoJRo0b9YRHst6deiYh8akWKFGHkyJGkSpUKHx8f3NzcePLkCTt27GDnzp1UrFiRkydPYjQaady4MZs2beLJkyfY2NiYO3QR+YzY2NhgY2PDoUOHsLKyonr16kycOBGAOnXqYGFhgcFg4JtvvmHDhg2kSJFC4yQR+SSio6OZN28eN27cYMKECVhaWlKxYkW6d+9uOn2mZMmS7Ny5k7p169K1a1cWLVpE6tSpVXcSkUQlbvOpuHf+tWvXplatWri6utK7d28mTpxItmzZMBqN2Nvb06lTJ8LDw7l06dIfnuwuIomb0WjEwsKCn3/+GcC0c3HJkiUpUKAAly5d+t3CFvUUicjHkD9/flKnTs3KlSspWbIkNjY2ppyUJUsWoqKifveMxi0SnxrXRcwg/iRy06ZNLFu2jJkzZ/L69WtmzpxJiRIl2Lt3LwMGDCB//vz8+OOP3L9/nyJFiuDi4oKVlZWOzhBJgjJnzkxISAjbt29nxYoVDBs2jNmzZ+Pv74+7uztDhw6lfPnylC9fnhUrVjB16lQd7ywi/ycWFhZkzZqVkSNH8uLFC1q0aMGiRYto1KgRJUqUoHHjxjRs2JDkyZMzfvx4DAYDPXv2JGPGjDRt2tTc4YtIImZhYUGzZs3IlCkTP/zwAxcvXqRdu3Y0aNCAokWLkixZMlxcXDAajfTt25dXr14xbdo0c4ctIkncHzUT1K9fn4CAAJo0aUJUVBS+vr6MHj2asmXLsmvXLm7fvk3p0qWZMWOG6Tty5cpFVFQUVlZWatgSkT8V1/z08OFDXr16RdasWbGzs8PW1hZ/f3+aNGnClClTMBqN1K9fn6FDh/L06VOWLl1q7tBFJAmxsrKiR48ePHjwgCZNmnDz5k0GDRrEuXPnSJ06Nd9//z329vaUKlWKnTt3UqZMGfLly2dafCMikljEze0WLVrE27dv6dKlC/b29uTJk4datWoBMHnyZLJkyQLAqVOncHd3N4351LwukrR88cUX9OjRgwEDBpA7d27q1KkDwJs3bwgLCzPlChGRDy3+5rpx4w9XV1fWrFmDl5cXQ4YMwcrKCgsLC6Kjo0mWLJmZI5Z/O4NRZ8uKmM26det49+4dkZGRdO3aFYBff/2VFi1a8ObNG/bv30/mzJl/95x2WhdJeuK/dKxXrx7Dhg3D2dkZgFy5cpE2bVrTEakpUqRg3bp1pompcoaI/K/ics7SpUtZv349O3bswMLCgnPnzrFt2zbGjh1L27ZtyZcvH6NGjQJg5cqVtG7dWgvrROSjunz5Mp06dWLu3LmUKVMGPz8/5s+fj5WVFdmzZ2fYsGFkypQJe3t7pk+fzpYtWzh06JAaPEXEbOI3ERw4cID79++TJk0avvzyS3LlykVgYCDNmzfH2dmZRYsW/a74//btW8aOHcvixYs5evQohQoVMufPEZF/ubi53JYtWxg+fDjh4eFYWVnh5uZG8+bNyZkzJ0+ePKFly5a8fPkSBwcHrl69yo4dOyhfvry5wxeRJObs2bM0atSIFStWUKNGDQCWL1+Oi4sLRYoUoXz58jg7O1OtWjVu3rxJnjx5VOcWkUTLycmJq1ev4ubmRrt27XB0dOTIkSPUqlWLpk2b0r59exYsWMCNGzf46aefMBgMprGfiCQuGzZs4M6dOwwZMiTB9bi/81FRUQwcOJB58+bh5uZGypQpCQoK4tGjRwQFBek9nYh8MLt372bt2rWmzQ5+23v04MEDZsyYwbZt28ibNy/Fixfn8OHDPH/+nIsXLyofyX+lxnWRTyj+5PHRo0d89dVXvHjxgkmTJiVYGf3rr7/SsmVLIiIi2L59O9mzZzdz5CLyb2A0Gnnz5g29evWiaNGiDBo0iKJFi5IqVSqOHDnC/fv3OX36NOvWrWP16tUq4ovIB/H1119Tvnx5vL29Afjqq69IlSoVZcuWZceOHdy9e5eVK1fSvHlzAJ0KIyIf3ejRo9m9ezcbN24kS5Ys3L9/n6+//pqoqCi++OILcuTIQdu2bWnatCnW1tZ6kSci/wru7u74+flhb29P+vTpuXnzJn5+fhQvXpy9e/fSpEkT2rRpw/Tp00mZMiUA9+7dY8KECRw9epQVK1ZQvHhxM/8KEfkc7Ny5k1atWjFq1Ci6dOnCmDFjWL9+Pa1ataJXr17kyZOHZ8+esWLFCt68eYOTkxMFCxY0d9giksTEzdG+++47Tpw4QWBgIBYWFnz11Vfkzp2batWqcebMGdasWcPYsWPx9PQEtEmLiCQOf7ZLevfu3Tl9+jRdunShffv2ODo6cuzYMdq1a0fq1Kmxs7Pj0KFDWFtbq9YlkohNnToVd3d3Zs6cSd++ff/0vkWLFrF161YiIiLIkSMHCxcuxNraWuMlEfkgoqOjmTVrFgsXLqRWrVrMmzcP+M+cLG4s8vTpU44ePYq3tzc2NjZkzpzZtOGU8pH8N2pcF/lEHjx4QNasWQEICAigTp06nD17ll69emFlZcXhw4extbU1Jfa7d+9SqVIlKleuzMqVK80cvYj8mwQEBNCsWTPSpElDoUKFWLduHRkyZPjdfRoEisg/EZdDNmzYwLZt2xg9ejRNmzYlVapU7NmzBysrK96+fcusWbMYPny4mtVF5KOLmytduXKF/v37M3v2bAoXLkyxYsXIkCEDGzduJCAggM2bN/PgwQOOHTumpnUR+VdYsmQJI0aMYMuWLZQrV45p06YxZMgQNmzYYFr8t2fPHmrXrs3EiRPx8PAwPXvlyhXSpEmjo55F5G95+vQpHTt2pGLFiowYMYKnT59Srlw5UqdOzcuXL2nSpAl9+/YlV65cGiOJyL/C/v37GTduHDNmzMDFxYUUKVIQEBCAo6MjsbGxHDt2jPLly6vuJCKJ0vXr18mdOzc2Njama126dOHcuXN07dqV9u3b4+DgwMOHD3n9+jX58+fHwsJCm8eIJAFz5syhX79+TJs2jQEDBpiu/3Ye99uFMMoPIvIhvXr1ihUrVrB48WLKly/PwoULgd/3Iv3RojzlI/kralwX+QQOHDjAhAkTGDVqFH5+fsyaNYtHjx6RIUMGzpw5Q6tWrciZMyd79+5NsCrpyZMnpEuXTo2nIvI7bdq04datW2zevNm0KEZE5GO4efMm1apV4+nTp1SvXp1ly5ZpsYyImF2LFi0ICQnhxYsXpEqVijVr1pA5c2bgffEeUNO6iJhd3PioX79+pEyZkvHjx+Pv70+7du2YPn063bp1482bN4SFhZlqRMWLF1dBX0T+UtwLwfhjnbhra9asoWzZstjb21O5cmUqV66Mt7c3PXr0YPPmzTRp0oQRI0aQM2dOM/8KEZH36tevz86dO/n222/ZtGkTjo6OQMLGLDU9iEhis3btWoYPH87kyZNp0qQJ1tbWps+cnZ05fPgwnp6etG3b1pQX4c93axeRxGfWrFkMGDDgd83rAI8ePaJFixYMGDCAFi1aAL9vahcR+Sficsrr16/x9fVl6dKlCZrX48YkT548oVOnTlSvXp3BgwcneFbkv9GIVuQTcHBw4N27d3Tq1Inly5dz9epVMmbMiMFgoEyZMqxdu5Y7d+5Qs2ZNYmJiTMk7Y8aMWFpaEhMTY+ZfICL/NuXKlePJkyfY2dkB7weFIiIfmtFoJF++fAwfPpzMmTMzZsyYP2xaB9S0LiKfRNyYZ/LkyVy6dInkyZPj5+dnalqH9w3raloXEXMJDAzE19cX+M/46N27d6ROnZqAgADatWuHl5cX3bp1IzY2lo0bN7J+/XoiIyMpXbo0VlZWREdHm/MniMhnwMLCgp9//pkTJ04AsGHDBpo2bYrRaKROnTrkyZMHX19fcuXKxaRJkwDInz8/KVKk4O7du6Z6koiIOcXN74YPH06JEiXo27cvjo6OCRYjx1HTuogkNk2bNiVPnjx4eXnh7+9PVFSU6bPJkycTGRmJl5cXe/fuTfCcmtZFko5+/foxY8YMBg0axIwZM0zXnz59Sps2bbh//z6NGzc2XVctXEQ+pLj3bKlSpcLFxYXOnTtz4sQJunfvDrwfkzx8+JAWLVrwyy+/0L9//wTPivwVjWpFPiKj0YjRaKREiRJUqFCBe/fu8eWXX/L48eME95UpU4Z169Zx9+5dihYt+rsGVDWCichv9e3blzRp0tCnTx9AhSoR+b/5q6aouEllqVKlyJAhA7dv3wbQojoR+WhevXr1Xz+PG/OkS5eOMmXKULBgQdKkScMfHSanwpiIfGqhoaFs3LiR7777jlWrVpmuZ8qUiVmzZtGmTRu8vLxwdXUFICQkhDVr1hASEoKtra3pfjVmicjf0atXLxo1asS4ceNo3bo1TZs2xWAwkDp1agCeP39OeHi4qdb85MkTPD09+eGHH8iYMaM5QxcRAf4zvytcuDAWFhbs2bMH0FxORBKfP6rD29raEhAQQOrUqZkwYQL+/v6m+4KDg3FycqJz5840bdr0U4crIv8i/fr1Y+bMmQwaNIiZM2fy5MkTWrRowZMnT7h16xbW1tbaAEFEPpo/al4/deoUrq6uPHv2jPbt2/PixQsuX76sDVnkf2Yw/tHbXRH5x+If0xUeHs7Bgwd59+4dc+fOxdraml69elG/fv0Ezxw7dowZM2awbt06NauLyJ+Kyy8DBw7k2bNnLF++XMV8EfmfzJgxw3SsYExMzN8ad3Tp0oUdO3bw6NGjjx2eiCRRRYsWpXnz5owaNQr466MEd+3aRcOGDQkMDKRatWqfKkwRkf/qypUrLFiwgP379zN06FA6duwIQM2aNTl37hy7du0ia9asvHv3Djc3N54/f87x48fVrC4i/yeFChXi5s2beHh4MH78eOA/Y6hZs2bh4+ND8eLFiY6OZtu2bQQFBZE/f34zRy0i8h9xOSsgIIBGjRpx9OhRKlSoYO6wREQ+iDt37pArVy7TnxcvXszFixdJkyYNpUuXpkGDBkRGRtKkSROeP39O48aNqVatGuPHjyd37tzMmTMH+Ps1fBFJvGbPns3gwYOxtbUld+7cnDt3ztS0rpqSiHxscfO2169fs2zZMnx9fbl48SIFCxbk4sWLykfyf6LGdZGPIH7T+oQJE7hx4wajR48mV65cnD17liFDhpAsWTL69OlD3bp1AVi5ciVt2rQxTTo1ARVJOuLnjPj+qlnryZMnpEuXDktLyz/9DhGR3zp27BhVq1bFycnJtBPofxt3xOWXI0eOMHPmTDZs2KB8IyIf3KhRo9iyZQtBQUF/ax5kNBqJiIigYsWK1KlTx9SoJSJiLvHHU7/88guzZs3C39+f8ePH06ZNG0JCQqhZsybPnj3j9evXpsbRw4cPY21trTqQiPxPwsPDsbCwoEiRIqb8sWTJEr755psEucTT05OffvqJiIgIJk2axFdffWXGqEUkqfhtXfuv6twA165dw9vbm6lTp2pMJCKJwujRo9m7dy/z5s2jaNGiDB06lAULFvDNN9/w5s0bjh49iqenJ2PHjiUyMpKePXty4sQJQkNDyZUrF/v378fa2vpv5VARSRri3tEdPHhQTaIi8snFb16fO3culy9fZsWKFcpH8n+mxnWRj2jo0KGsWLGC0aNHU7t2bXLmzAnAuXPncHd3x9LSkho1anDkyBFOnz7No0eP1AgmksTEbzgPDAzkzZs3hIaG4uLi8l+fiz/we/r0KRkyZPjosYpI4vD69Wt27tyJu7s7FSpUYM2aNcBfL5oLDw/Hzs5ORXIR+Sh69uzJ5cuXOXLkCB4eHuTJk4cePXr85XObNm2iSZMmamwQEbN5+PAhGTJkwMrKisjISGxtbQGoVasW586dI126dAwbNoxOnToB70+LePXqFVmyZKF8+fJYWlqqsC8if9tvG5fi8k65cuUIDg7G19f3d83rABEREdjZ2X3qcEUkCYqfp5YsWUL+/PmpVKnS32q8jLtHYyMRSQx8fX1ZvXo1yZMnp1u3bqxYsYIBAwZQvnx53r59y/r16+nRowdjx45l6NChxMTEcPfuXUJDQylSpAgWFhbKhyKJ1IfYkC4qKgpra+sPFJGIJFX/66LjuM/DwsJIliwZBoNB+Uj+z9S4LvKRHD16lLZt27J8+XKqVq1quh43CL1w4QJTp07l1q1bODo6sm3bNq2aFknCPDw82LBhA5kzZ+bp06ckT56cxYsXU7p06d/dGz9PzJo1i6VLl3L48GEcHBw+ddgi8hlp164dbm5uph1dAgICGDJkCBUrVvzL5vX414OCgsiSJQsZM2b8pPGLSOIUN67Zt28fPXr0wNHRkZs3b3Lu3Dny5s37l8/F0Ys8ETGHQ4cO0bdvX0aNGkX9+vVNTaEtWrTg1q1beHl54e/vz969e/Hw8PjDBco6PUtE/q648c+ZM2c4deoUefPmpWDBguTKlQuAcuXK8fz5cxYvXkzlypX5/vvvCQoKYtOmTQCqOYvIRxd/XBMUFES/fv14+fIlK1eupFixYn/6/it+3WnPnj3kyZOHL7744pPGLiLyofj6+prmfps2bWLRokXExsYSHBxMYGBggrr67NmzGT16NAcOHKBo0aIJvkdzRZHEKf54aNmyZVSrVo0cOXL8T8+JiHwI/9dFx/Hnb8pN8k9opCvykTx69Ah7e3vKlCljumY0Gk2ro4sVK8b8+fPZsWMHO3fuNB2doYQukvT4+PiwbNky/Pz8OHbsGBMnTuTy5cu8evXKdE/cOrP4Az9vb2/Gjh2Lh4eHmtZF5L969eoVT548oX79+pw5c4aUKVPSoEEDvLy8OHr0KK1btwbA0tKSmJiYBM8ajUbT5HPu3Lk0btyY169ff/LfICKJU9y4pnr16uTKlYvz589Tq1YtU9P6b3PSH5kzZw5eXl4fNU4RkT9SsmRJUqRIwbRp0zh48CAAzs7OXLt2DX9/f2rWrImbmxvVqlVj2rRpLFy48HffoUYEEfm7DAYDW7ZsoUqVKixevJgWLVrw3XffceDAAQBOnjxJxowZadOmDVWrVmXq1KkMGzYMg8GgmrOIfHRx778AxowZw7hx44iIiODmzZt07tyZU6dOYTAY+O1+avHrTgsXLqR27do8f/78k8cvIvIhLFq0CH9/f6KiogBo3rw57du3Jzw8nKtXr/LLL78A75vSAapUqYKdnR0hISG/+y7NFUUSn9jYWNPc7OnTp7i6uuLm5sb9+/f/63Px+wN2797NhQsXPnaoIpLIxc9HQUFBLF++nJ49e3LhwoU/nLfFiT9/27t3Lz///PMni1kSH412RT4SKysrHj58yL1794D/NJ3GxsYSEBDArVu3SJUqFWnSpMFgMBAbG6sdAkWSqNu3b+Pq6kqxYsVYt24dXbt2Zf78+dSoUYO3b98C719OxsTEJGhad3d3x8fHhzZt2pgzfBH5DDg4OPDDDz9Qt25dqlev/reb13+7WGbUqFF4eXmRL18+s/0WEUl8YmNj+emnn7C0tGTEiBFcunSJ7t27A3++oCYuN/n4+ODu7k7u3Lk/edwikrTFxMSQMmVK9uzZQ7JkyRg7dizffPMNV69eZe/eveTMmROAL7/8kj59+lC0aFEOHz5s5qhF5HMUV1e+f/8+69evZ9asWVy4cIEVK1Zw9+5dZs2axb59+4D3p4D269ePOnXqcOrUqT88yU9E5GOIm6PNmzcPLy8v+vXrh7+/P76+vmTIkAE3NzdOnz6doAnit3Wn4cOHs379+gQbQomIfE4aN27Mpk2bsLa25tChQwC0bduWgQMHUqxYMYYNG8aZM2dMTemZMmXCxsYmwUZWIpJ4xf3d9/T0ZMiQIeTNm5edO3fStm1bHjx48IfPxB8vzZ8/n/bt2xMREfHJYhaRxOefLDqOy0cLFy6kVq1aWnQs/4jB+GdLJETkb/mzY7rOnz9Px44dqVu3Lj179jQd2fru3Ttq1apFzZo1GTFixCeOVkTM7Y9yRu3atSlRogQNGjSgbt26TJ48GTc3N4xGI6NGjSJjxoz07t3bdP+iRYsYPHgwS5cupXnz5p/6J4jIZ+zJkyf07duXnTt3sm/fPkqXLs2bN28ICAhgyJAhVKpUidWrVwMQFRWFtbU18J/FMso7IvKh/Nk8Kjw8HF9fX6ZPn0716tXx9vYG/nP04G8bG9zd3Vm2bBlNmzb9pPGLiMB/ctPbt29xcnJiz549zJ0717T4Jv6xqXfu3CFHjhxYWFjoCFUR+Z+dPn2aRYsWcf/+fRYtWkS2bNkA2LFjB1OnTiVVqlT069ePb7/9FtBRzSJiHrGxsXTq1AkbGxsWL15sur5nzx48PT2JiopiyZIlFC9enOjoaCwtLTEYDKo7iUiiEH/+d+jQIZydnXF1dWX06NEArFu3Dm9vb4KDgxkyZAi2trasXLmSX3/9lQsXLpieFZHEbebMmYwZM4bt27djb2/P48ePcXV1JVOmTKxfv56sWbOa7v1tLXzo0KH4+PjQsmVLc4UvIonIvHnz8PDwYPv27eTPn5+DBw+yfPlynj59ysKFCylTpowpD/02Hw0bNgwfHx9atGhh5l8hnzPtuC7yD8Rvtjh06BC7du1i165dAJQoUYK2bdvi7+/P6NGj2bRpEzt27KB+/fq8evUKDw8Pc4YuImYQP2ecO3fOdCJD586dCQwM5Ntvv2X69Om4ubkBEBoaSlBQEI8fPzZ9x6pVq+jRowfLli1TEV9E/lL8HawAMmbMyKxZs6hXrx7Vq1fn9OnTpp3Xp06dyokTJ6hduzaAmtZF5KOJPybasWMH3t7erF69mocPH5IsWTLatGnD4MGD2bdvH66ursB/dl7/7U7rS5cuVdO6iJhNXG5KkSIFGzZsoEqVKixdupQtW7aYmrHiTo3IlSsXFhYWCY5hFRH5uy5fvkxgYCCnTp1KcIx8vXr1GDx4MGFhYYwbN45jx44BKM+IiFlYWFjg4ODArVu3CAsLM12vWbMmDRs25MKFC3Tv3p2zZ89iZWWFwWBg3rx5DB8+XHUnEfnsxTWe79ixAzs7O7p06cLGjRsZO3YsAM7OzvTs2RNbW1vc3NxYsmQJZcuW5fz583944qCIJE6XLl2iZcuWVKhQga+++oqaNWuyfft27t+/T6dOnUzzvfj1o7j3dIsXL1bTuoh8ELGxsZw6dYpWrVpRpUoVMmfOTOvWrRk0aBDW1ta4uroSFBSEwWAgOjra9FxcPlq0aJGa1uUfU+O6yP9R/KMzhg8fTteuXenVqxf9+/enVatWAAwdOpQBAwbw4sULWrVqxXfffYeVlRWnT5/GyspKE1CRJCR+zhg2bBh9+vRh7969REdHU7RoUbJnz06RIkVImzYtADdu3KB169Y8efLEtBsDQKFChdi+fbsatETkL8UvahkMBt69ewe8P3505syZ1K1blxo1apia1+vXr893331HihQpiI2NBSAwMJABAwbo5aGIfFBxY6LBgwfTvXt3Zs2axdixYylUqBB79uzB0dERZ2dnhgwZwsGDB3FycgL+8wJw1qxZDBgwAF9fX+UmETG7uAaD5MmTs2XLFlKmTMnEiRPZvn27qXk9vj86bUJE5K906dKFqVOnkjFjRubMmcPly5dNn9WrV4+ePXtib29Pzpw5zRiliCQlcbWj3/rqq6+4f/8+O3fuJDw83HS9QIECNG3alC+++IKZM2cSEhLCtWvX6NOnDwsWLNDcTkQ+W/Hz4ejRo2nRogU5cuSgR48eNGvWjDVr1pia11u0aMGIESMoUKAA5cuXx9PTE2tr6z+cO4pI4vTkyRN+/vln05+jo6MpWLAgvXv3Zt++fXTt2pU3b96Y6kfz589nyJAhqoWLyAelRcfyb2Awxm2/KCL/J5MmTWLmzJls2bKFUqVKMWXKFDw9PWnQoAFbt24FIDIyksePH5MsWTLSp09vWpFkZWVl5uhF5FMbN24cs2fPZt26dZQoUQJHR0cATp06xYQJEzh37hzR0dFkzpyZFClScODAAaytrRMcMSgi8lfi72Y8b948jhw5QmhoKHXr1qV3794APH36lD59+hAYGMjevXspXbo04eHhJEuWzPQ9YWFhXLhwgQoVKpjld4hI4rV27Vp69+5NYGAgBQoUICQkhHHjxrFq1Sr27t1L+fLlefnyJb6+vpw6dYo1a9ZgYWGB0Whk2LBhFC1alNatW5v7Z4hIEvDs2TPSpUv3l/fFzdnevn1L06ZNuXnzJitWrKBSpUqfIEoRSUzijl++evUqz58/5+nTp6ZdrFatWsX06dMpXrw4/fv3p0iRIqbn3r59S4oUKcwVtogkIfHrTps2bTLVk+KaF1q2bMmZM2cYPXo0lSpVIk2aNHTq1ImyZcvi4ODAqFGjOHv2LLlz5+aXX34hd+7c5vw5IiIfxC+//MLq1aspXrw49erVA+DBgwd4e3uzYcMGWrduzahRowDYvXs3NWrUMNW6dFqOSOITf7wUX0BAAG5ubnh6etKjRw/T9VWrVnHw4EH27dtHqVKlWL9+PUFBQbRr147Ro0drp3UR+T/7s3zk4+PDlClTmDx5MvXq1TP1CGzYsIG1a9dibW2NlZUVc+fO5fHjxxQuXJi1a9eaNpsS+afUuC7yD/z8888MGTIEFxcXGjRowPbt22nbti1dunRh5cqVVKxYET8/v98992f/UxCRxMtoNPLw4UOaNWvGgAEDTCczwH8aHB4/fsyTJ0+4dOkSX3zxBWXLlsXS0lILXUTkf/L8+XPT6Q1Dhw7lhx9+wMnJifTp0zNixAg8PT0ZPnw4dnZ2PH36lP79+7N27VquXLlC4cKFTd+jBTMi8jFNmjSJo0ePEhAQYLoWFRVFx44duXjxIsePH8fBwYG3b9+SPHlyDAaD5lEi8sl169YNOzs73N3dyZ49+1/eHzd+evPmDSNGjGD69OkaT4nI/ySuccnPz49Bgwbh6OjImzdvsLa2ZunSpZQrV47ly5cze/ZsSpUqRc+ePSlatKi5wxaRJCR+g+WQIUPw8fEhe/bs3Lx5kw4dOrBo0SIAOnToQFBQEPfv3ydjxowYjUauX7/O5cuXadasGQEBARQoUMCcP0VE5B+JXz/fsWMHDRo0IH369Kxdu5Zvv/3WdF9c87qfnx916tRh6tSpps9U6xJJnOL/3d65cycPHjygXLly5M+fn7dv3zJixAiCgoJo3bo1ffv25cmTJ3Tt2pVKlSqRK1cu+vXrx8GDB8maNSv37t2jUKFCZv5FIvK50qJj+TdTF5zIP5A7d24aNmxIuXLlOHHiBG5ubkyaNAlXV1csLS2ZOnUqVapU4dChQwme0wRUJOkxGAwYDAbu379P8uTJE3xmaWlJREQEsbGxFC1aNMELx5iYGDWti8jfdvjwYZo1a8avv/7K8ePHWbt2LZs2baJs2bLs2bMHg8HA+PHjCQ4OZsaMGWTIkIHp06eTN29e8ufPn+C71GQlIh9TVFQU58+fNxXNYmJisLa2xtnZmePHj/PixQscHBxMu4YajUbNo0Tkk8uRIwc+Pj44ODjQvXt3cuTI8V/vj1t4nDJlSmbNmgW8z3fW1tafIlwRSQQMBgPHjx+nS5cuTJ8+HRcXF27cuEHBggU5f/485cqVo2PHjgCMGTMGOzs7vLy8sLGxMXPkIpIUxG9af/z4McePH+fIkSOkS5eO8+fP07ZtW8LCwli1ahUrVqzg9OnT3LlzBysrKxo3bgxgGltlzJjRnD9FROQfiYiIwM7ODoDg4GC++eYbBg4cyMyZM/nll1/49ttvTY3tWbNmpUePHrx+/ZqHDx8myKWqdYkkTnF/t93d3fHx8SFt2rQ8ffqUQYMG0bdvX4YPH86MGTMYO3YsEydOxM7OjpQpU7Jt2zb27dtHsmTJsLGxIWXKlGpaF5H/s/jv1f5s0fGGDRvo0KED06ZNY8CAAaZFx/7+/ly+fJk0adLw7t07ADWtywenTjiRv+mPVjwbDAY6duyIwWBg3rx5VKhQgfbt2wOQJUsWnJ2diYmJ0WppEQHe55Ho6Gh+/vlngAQ7qV+6dInDhw/TtWtXHB0dTc+ocVRE/heZMmUiderU9OvXjzJlyjB8+HDKli3Ljh07aNOmjenloJOTE2nTpmXEiBFkypSJsWPHAuiEBxH54P5sLlSvXj02bNjA6NGjGTx4MKlSpQLe5zE7OzsiIyMT3K8jk0XkUzp8+DCVK1dm5MiR2NvbM3XqVIxGIz169PhbzevxqWldRP6b69ev/27H4StXrtCgQQNcXFy4efMmderUoVu3bvTs2dN0T8eOHbG0tOSbb75R07qIfHS//vorOXPmNM3LJk6cyPHjx8mbNy/58uUjWbJkZMmShY0bN9KiRQvat2/PypUrKVOmDGXKlAHg2LFjLFu2jM2bN7Nv374ENXARkc/Jnj17OHHiBKNGjcLNzY0rV66wf/9+hg4dSlhYGG5ubmTPnp2aNWua6mJZs2ZlxIgRpEuXDoPBkKB5XUQSj/gnMZw8eZLTp0+zY8cOypQpw8yZM/Hx8eHt27d4eHjg5eVF7969CQwMJFOmTDRs2BCA7du3kzVrVhwcHMz5U0TkM6dFx/I5UFeKyN8Qv9li69at/Prrr+TNm5dcuXJRqFAhjEYjV69e5e7du6RIkYLw8HAOHTpE9erV6d279+++Q0QStz/7+54tWzb69OnDkCFDyJMnD40aNQIgMjKSUaNGkTFjRk1CReQfyZMnD61bt2bPnj3UqVOHUqVK8ejRIzw9PRkxYgRdunThxo0bpEmThgkTJpAqVSrc3d1Nz6tpXUQ+pPhjosDAQIKDg7Gzs6Ny5cqULFmSpk2bsnv3bl6+fMmAAQOIiIhgzJgxZM2a9XenQIiIfCrjx49n/fr1eHh40KZNG/r374/RaGTatGkA/7V5Pf4LgYULF/Lrr78yceLETxa7iHxe1q5dy4ABA7h58yYpU6Y0Xb906RLh4eG8efOG6tWrU7duXRYuXAjAkiVLePjwISNHjqRdu3bmCl1EkhBXV1cePnzI1q1bgffjndSpU3Po0CFy586Nra2t6XrNmjXZtGkTzs7ONGrUCH9/f9PYKCoqivv373Pw4EGKFClitt8jIvJPGI1Gtm7dytGjR9m3bx9Xr17lyJEjWFtbky5dOr7//ntiYmJo2LAhAQEB1KhRw9TImj59etN3qGldJHE5deoUZcuWNTWtL1q0iLNnz5IvXz4qVKgAwODBg7GysmL+/PkYDAZcXV3JkycPbm5uAFy9ehUfHx+WL1/OoUOHSJMmjdl+j4h8vrToWD4n6kwR+Rt+e5RPtmzZePv2Lfb29owYMQJnZ2dcXV1p3LgxRYsWBd43aWzYsOF33yEiiVv8Bq2lS5dy48YNQkJC6Ny5M0WLFqV37948evSIJk2a4OLiAsDPP//Ms2fP2LZtm3ZaEJH/2bVr1yhYsCDwvvF8wIABrF69mvXr19OiRQuuXr3KmzdvqFWrFgDJkiWjVatWODs7U758eXOGLiKJXPwjCJcvX06OHDm4fPkyZcqUoU+fPowZM4bkyZOzceNG8ubNy5dffkmKFCk4cuQIFhYWWvwrImbRokULTpw4ga+vL0ajkbZt2zJgwACA/9q8Hn8e5+3tjYeHB0uXLv20wYvIZ6VVq1ZUqFCBlClT8uzZM9KlSwdA69atGTx4MNmyZcPZ2Rlvb29iY2MxGAxcunSJZ8+e8fbtW1KkSGHmXyAiSYGXlxd2dnYAPH/+nLRp0+Li4kLKlCnp0qULw4cPZ9KkSaZxUI0aNVi+fDmzZ89OMD6qWrUqZcuWJVmyZGb7LSIi/0RcTpszZw4VK1bkyJEj9OrVK8HpOWnSpGHSpEkANG7cmPXr11O/fv0E36P3fyKJS8+ePbGysqJMmTKmv9/nz59n0aJFlChRguDgYNPClf79+2MwGPDx8eHVq1eMHj2azJkzYzQaOXfuHMHBwRw5coSvvvrKnD9JRD5TPXr04NGjR1p0LJ8NvQEW+S+MRqPp348dO8bhw4fZsWMHly5dYv369VSpUoWBAweydetWqlWrxvbt26latSrNmjUjKCgIKysrYmJizPgLRORTCQ8PB/7ToDV06FCGDh3Ky5cvuXz5Mj179sTb2xs7OzvmzZvHypUrefbsGa9fv6ZkyZIEBQVhbW1NdHS0ilYi8rdt27aNwoULU79+fX799VdevXpF6tSpWbRoEQEBAcyfP5/06dNz+/Zttm/fzqlTp+jRowc3b96kYsWKWFlZER0dbe6fISKJ2OrVq/nhhx/Yvn07J0+e5MaNG+TIkYM5c+awbds2PDw8OHz4MPv372flypUcP37cNCZS07qIfGqxsbEUKFCAWbNmYW1tzdKlS1m1ahUAAwYMYNCgQSxfvhxvb2/u3buX4Lk/alpv3ry5WX6HiPz7xdWdc+TIwfXr18mWLRsBAQGma7ly5SJDhgxUqlQJeN8s6unpydq1a/H09FTTuoh8EkajEXt7e6ytrfH19SVfvnz8+OOP2Nra0qpVKxYsWMC0adMYMWJEgucaNGjA7t27TQuS46hpXUQ+V/HnfO/evePrr7+mXbt2nD59mvHjx/Pq1SvTfalTp2bSpEnUr18fLy8vc4YtIp+Aq6sr06ZNw2AwcOvWLQAWLFjAd999x71791i6dCnBwcGm+/v160fr1q15/fo1mTJlAt4vaGnfvj0+Pj5qWheR/7Np06aZNth9/vw5BoMBFxcX5s+fz7Vr1xg+fDjA7xYdR0REJOiPrFq1Kn5+fmpal4/OYIz/X56I/CEfHx9OnTpFaGgoa9euNTVQ3Lp1i3HjxvH8+XPWrFmDvb19gueio6OxstLBBiKJXbt27XBycqJRo0bA++O/xo8fj5+fHyVKlCAwMJB69erx5Zdf0rFjR9zc3EiRIgWRkZGmVY2A6bhAEZG/69KlS9SvX59Xr15RqVIlvvnmG+rVq0exYsVwc3Pj8uXL+Pr6cvDgQVxdXfniiy9wdHTk2LFjWFtb64QHEfnoPD09OX78OPv37zflnF9++QU3NzeSJUvG5s2bf/eMdloXEXOKy0G3bt2ib9++REZG0rlzZ9q2bQvAjBkzmD59Op06daJz587kzp3b9KyPjw9DhgxR07qI/KW4cdGZM2fIkiULnp6e+Pv7s2rVKurWrcvly5fx9PTk0qVLGI1GsmTJwsOHD9m8eTPFixc3d/gikgT8tlYdGhpKtWrVePPmDX5+fhQqVIjo6GhWrFiBm5sb7u7ujBs3zowRi4h8HPHrVMuXL+fLL7+kVKlSwPvdk48ePUqTJk3o06cPDg4OADx8+JA0adJgY2OjGpdIIhZ/vLR8+XIWL16Mh4cHDRo0AN6fRLphwwb69u1Lhw4dTKdswX/mhHEte3pXJyL/V+vWraNGjRqkTZsWAF9fXwYNGsTRo0cpXLiwad7Wo0cP3N3dGT9+/B9+j97NyaemjlqRv+Gnn37C19eXnDlzcv/+fdNx0Hnz5qVmzZr06tWL58+f/65xXU3rIolfp06dOHbsGCtXrgTeT1DfvHlDnz59KFGiBH5+fnTp0oXZs2dz8uRJ0+4K3bt3J1WqVKbvMRqNaloXkb8lbtIYHR1NgQIF6NOnD69fv8bBwYG7d+/Spk0bpkyZQrNmzdi5cyfbtm1j4MCBVK1alfDwcIoUKWJ6XmMVEfmQDhw4wJEjR4iNjaVChQrUqlULGxsbwsLCePfuHTY2NsTExJA7d24GDRpEnTp1uHHjBvnz50/wPSqMicinFr8oH/fPvHnzMmvWLPr168fSpUsBaNu2LQMGDMDCwoJBgwaRPXt2unfvDrzfab1v376sWbOGZs2ameeHiMhnw2AwsHPnTjp27MjKlStZsmQJFhYWtGzZkvXr11OvXj3mz5/P3bt3OXToEEWKFOHrr7821aVFRD6m2NhYU6162LBhxMTEMGXKFPbu3Uv9+vVp1KgRW7dupVChQnTo0AELCws6d+6cYGwkIpIYGI3GBCctr1mzhi5dupAjRw4yZMjAzJkz6devH1u3biUiIoIuXbrQpUsX7O3t8ff3B9QEJpKYxY2XXr58SdGiRYmJiWHJkiUYDAbTqQtGo5E5c+ZgYWFBmzZtyJAhA4CpaV0N6yLyT+zZs4fWrVszevRo+vbti6OjI02aNGHhwoU0b97ctOi4Q4cOALi5uWFhYfGHi441XpFPTTuui/zGn00eJ02axOTJk+nduzeurq5kzZoVgKCgIJydndm0aZOO7RFJYl6+fEnLli1xdnamW7dueHt707JlS16/fk2yZMkIDw+nYcOGdO7cmQEDBnDz5k3Kli1L6tSpGT16NO3btzf3TxCRz9C9e/fInj276c+7d+9mwoQJjB49mqpVq+Lj48OoUaMYNGgQGzdu5NatWxw5coTChQubnlGxXEQ+tMWLFzN8+HCKFi3KjRs3MBqN+Pr6kjZtWkqUKMGcOXPo1auX6f6DBw/Sv39/tm/fbppbiYiYQ/xxUVBQEMHBwRQsWJDUqVNjb2/P9evXGTBgAJGRkXTp0oU2bdoA73eyadGiBZaWloSEhDBhwgTKli2rndZF5L+Ka0x48uQJI0aMoEiRIvTv39/0eZcuXVi3bh0bNmygbt265gtURJKs+GMjd3d3pk6dSpo0afjxxx/JkCEDISEhNGjQgCdPnrBt2zYKFixIdHQ0u3btonbt2tokQUQSpSlTpuDl5UVgYCAlSpTAYDAkyJcjRowgICCAFy9ekDlzZo4ePYqNjY2ZoxaRj2XTpk2kTp2aatWqMXjwYB49esSqVas4ceIEHh4eODo60qNHD+rXrw+8H1PNnj2bZcuW0apVKzNHLyKJzeLFi+nRowcjR46kb9++pEmThlevXlGvXj2ePn1qWnQcHR3NDz/8QOfOnVm4cKEWHYvZqVtFJJ74E8wTJ05w7tw5Hjx4ALxfRe3m5sayZcuYMGEChw8fJigoiGHDhuHo6MiXX35pztBFxAxSp05NlixZGDVqFN26dcPNzY03b96QK1cuMmbMyPXr14mJiaFhw4YAPH78mLp169KtWzfTMfMiIv+LM2fOkDNnToYMGcL169cBqFWrFpUqVaJ169Y8evSI7t274+/vz/3790mePDkvX77Ex8cnwfeoaV1EPqTFixfTq1cv5s+fz549e1i2bBmvXr1ixYoVFCtWjEmTJtG/f3/Gjx/P+fPnuXPnDlOmTCFNmjRkzpzZ3OGLSBIWf/e8YcOG4ezsTJs2bWjZsiVjxozh0aNHFChQgBkzZmBnZ8eyZctYvHgxAM7OzlhaWhIbG4ujoyOjRo1S07qI/CWDwcCpU6do3rw5QUFBfP3118D7E/wAlixZgrOzM23btmXr1q3mDFVEkqD4Y6MBAwawfPlyfH19cXBwICoqCgBHR0cCAgLIlCkTTZo04fLly1hZWVG/fn2srKyIjo42508QEfnHRo4cyYULF0x/fv36NcePH2fixImULFmSO3fusHXrVho2bEj//v159OgR48ePZ+nSpfj6+nLixAlsbGyUD0USqYiICLZt20aNGjVwdnZm4cKFDBkyBIDy5cszefJkQkJC8Pb2Zvv27cD7xS9Tp06lZcuW5gxdRBKZuL2qu3btysKFCxk7diyzZ8/mxYsXODg4sGPHDjJkyECjRo24du0aVlZWtGvXjm3bttG5c2czRy+iHddF/tCQIUNYvXo1L1++pGbNmjRv3tx0bMbIkSOZOnUqBoOBBg0aYGtry5IlS7CxsdHupSJJSHR0tGn3mPTp0/PmzRvWrl1L48aNiYmJwdLSks2bNzN06FBGjRpFhQoV6NevH7ly5WL27NkApvtERP6ukJAQVq5cydixYylcuDC1a9dm+PDhAHTq1IkUKVIwadIk7O3tefHiBbdv32bFihXMmDFDO16JyEdx8OBBqlWrxujRoxk1apTpetasWcmdOzc7duzAYDCwf/9+XFxcSJkyJVZWVmTIkIEjR45gbW2teZSImN2ECROYO3cuq1at4ttvv8XFxYXt27dTv359vv/+e7JmzcqNGzdo37495cqVY9asWeYOWUQ+A3FjnPDwcCwsLHjy5AnZsmUjLCyMhg0bcujQISZOnIiHh0eC+wGcnJw4efIkP/30EylSpDDnzxCRJKhPnz788MMPHDhwgFy5clGsWDGOHDlC9uzZTbkqJCSEUqVKUbJkSdatW2fukEVEPoiTJ08yd+5cli1blqCeXrlyZaysrHB3d2fWrFm8ffuWnDlzsm3bNpo1a8bSpUsTfI/e/4kkbkajkbx583L37l0WLFhA165diYqKwsrKCoPBwIkTJxg6dChp0qShXbt2CTY6UH4QkQ8pfi3Jx8cHV1dXRo0alWDn9fr16/Ps2TM2bNjAV199ZXo2fs+TiDmocV2E/xzRCnD27Fm6deuGj48Pz549Y9myZTx48IB27drh6uoKwMSJE5k+fTrDhw+ndevWZMqUiaioKKytrc35M0TkE4k/+Dt58iQdO3bEwcGBp0+fEhgYSMGCBQEICwvD2dmZS5cuER0dTebMmTlx4gTW1tYJ8o6IyP/qxo0bTJw4kUOHDpEpUybmzJnDhQsXOHLkCK6urpQrV+53eUaTTxH5GG7evEmXLl1InTo1I0eOpFSpUjRr1oyAgABq1qzJq1evSJUqFa1atSJFihRkypSJ5MmT8/XXX2NpaancJCJmEX9Od+fOHTp06MDAgQNp0qQJu3fvpnnz5tStW5dLly5RsWJFxo0bR+bMmbl37x5Zs2bVYhsR+Utxeeann37C09OTGzducO3aNQoWLEinTp3o2bMnTZo04cmTJ3z//ffUq1cPCwuLBPnp0aNHOp1GRD65t2/f4uTkxIQJEyhatCivX7/myy+/ZPHixdSuXTvBvREREVhbW6v5SkQSlbi6up+fH46OjlSrVo19+/bh4eHB7du36d27N7Vr16ZixYpMnz6dgwcPsmHDBmxtbc0duoh8IqGhobRp0waDwcCePXsICAigevXqppO0LC0tOXnyJJ07d6Z+/fp4eXmZOWIRSUzi145+2w8wf/58evfu/bvm9dKlS1O8eHEtOpZ/Fb0dliTvt7v7WVhYUKJECUqXLg1A7ty5mTRpEitWrADA1dWVYcOG8fLlS2bOnElMTAxt2rQhS5YsZolfRD6t+Mel9uzZk5CQEAIDA01H7NSuXZvdu3dToEABkidPzvr16zl9+jSRkZFUr15dDVoi8kHkz5+fmTNncuHCBYYOHYqzszP16tXj+PHjJE+enHLlyv1ucYzyjoh8DPny5WPJkiX07duX0aNH8+rVK8LCwjh79iwFCxbk6NGjXL9+nVGjRhEWFkbr1q1NOxXHxMQoN4nIJxd/Tnfu3Dny5s2Lu7s75cqV4/jx43Ts2JGpU6fSo0cPWrVqxaZNmwgODsbHx4fs2bMDv68liYjEF5dnLl++TKVKlWjXrh316tUjTZo0LF++HHd3dy5fvoyvry8dOnRg3LhxWFhYUKdOnQTN62paF5FP4beNDilSpMDf3x8rKytTPoo7NSJOhQoVaNWqFX379gW0c6iIfP6MRqNpDBcbG8vPP//MsGHDKFKkCPb29lSvXp0zZ85w7949cuTIYXpux44d5M+fX03rIoncb+tA9vb2+Pv7ExYWRr9+/WjQoIGpeT3OV199xc6dO8mWLZs5QhaRRCp+Plq0aBGXLl3i3bt3lC1blvbt29OzZ08AevfujcFgoG/fvqROnZqgoCDs7OzMGbrI72jHdZH/b9KkSezduxcLCwscHBzYsGGD6bPr168zadIkbt26RZMmTRg0aBAA3333HdOmTWPChAn07t1bLy1FkpAHDx7QpEkTZsyYQcWKFQEIDg6mTZs2XL9+nT179lCgQIHfPacivoh8DCNGjODKlSscPnyYV69e4efnR5MmTcwdlogkITdv3qRnz56cOXMGHx8fnJycEnz+6tUrLly4QMWKFTUWEhGzid+YNXjwYA4fPsyGDRvIlCkTtra29OvXjzdv3rBw4UKsra3x9PRk//79VKxYkUmTJqnuIyJ/W3BwMLVr16Z27dpMnDgxwfX169czcOBAunfvzvTp06lVqxaxsbEMGDCAxo0b64Q+Eflk4jc9PHjwgGTJkmEwGEidOjWxsbHA+82eqlevTsuWLXF1daVevXpcv36dn376CRsbG3OGLyLyUfn7+zNlyhSyZs1K7969qVy5MvB+p+UTJ04wY8YMHjx4wPnz57GystJJyyKJVPzx0pEjR4iKisJoNJqa1F+8eMGQIUNYu3YtGzdupHLlynTs2JGMGTMyb948QP0BIvLhubu7s2TJElq2bMnFixcJCwsjS5Ys+Pv7Y2Njw8KFC+nduzf9+vVj9OjR2NvbA8pH8u+irc0kyYo/wJw5cyaTJk3CxcWF06dPc+TIEby8vBgyZAgABQoUYOjQobi7u3Pz5k2ioqKwtrZmzJgx2NjYULduXb28FElCJk6cyMmTJ8mfPz8lS5Y0XU+fPj2rV6+mbdu21KlTh23btlGkSJEEz2oQKCIfUtx4Zvz48Zw+fZqiRYuyZ88eGjRoYO7QRCSJyZcvHwsXLqRXr14sW7aMLFmymBb3RUdH4+DgQJUqVQAVxkTEfOKaCB49esSPP/6Il5cXOXPmNH3+8uVLnjx5Yqr7XL9+nR49etChQwcMBoN2WheRv+3+/ftERUXRtm1b09gnNjaW9OnT065dO0JCQhg7dqzpZIdKlSrh7e1NzZo1SZEihbnDF5EkIP64Zvz48Wzfvp1nz57x5Zdf4u7uTvny5U3N646Ojly5coVmzZpx8+ZNrl27hrW1tU4WFZFE4cSJExw+fBh/f38yZsxIoUKFGDduHI0bN8bKyopx48Yxb948LC0t+eabb7h48SJr167FxsaGc+fOYWVlpXwokkjFP7VvxIgRrFmzBltbWx49eoSLiwvjx48nTZo0eHl5YWtrS/369fn6668JDw9nzZo1pu9RLVxEPqQTJ06wfv16tmzZQqVKlTAajfj5+TF58mRatWrF+vXrcXV1JTIykvXr15MyZUrTs8pH8m+iHdclyTty5AiXL1/miy++oHbt2ty9e5e5c+eybds2unXrxsCBA0333r17l2zZsmFhYWF6iSkiiV/8Ir7RaGT27NkMHz6c3Llzc/bsWezs7BLcExwcTK1atcidOzd+fn7mDF1EkoA/28lFxXIRMYebN2+ajov39PTkm2++MXNEIiIJzZgxg0WLFpEhQwZWr15NlixZTOOpGTNmsHr1auzs7Hj37h2hoaFcvnwZS0tL7Z4nIv+TZcuW4ebmRnh4OPD7edsvv/xC8eLF8fDwYNiwYbx8+ZJXr16RK1cuM0UsIklJ/Jzk6emJj48P8+fPx8bGhjlz5nDlyhXWrl1LlSpViI2NpVOnTvzwww+UKFGCEydOqGldRBKNFStWMHHiRPLmzUu6dOm4desWV65cIUeOHOzYsYOsWbOydetWJkyYQK5cuRg8eDClSpXi9u3b5M6dGwsLC+VDkSRg4sSJzJo1i82bN1O+fHm+//57Ro0ahYuLC7NnzzYtPt65cycvXrygVatWWFpaKj+IyEfh7+9P9+7duXjxIpkyZQIgIiKC1atXM3v2bFauXMlXX30F/Gfup9q2/BtpiyBJ0k6ePEmVKlUYOnSoacCYI0cOevbsSaNGjVi0aBEzZ8403Z8jRw4sLCyIjY1V07pIEhLXkP748WMMBgOurq7MmTOHGzdu8P3335vuiVsLlj59eg4cOMDGjRvNFrOIJB1/NMk0Go0qhomIWeTLl4/Zs2djaWlJ//79uXTpkrlDEhFJoFKlSkRERHD27FmCg4OB/4yn+vXrR/v27SlRogRly5bl0qVLWFpaEhMTo8K+iPxP8ubNC8CmTZuA38/bcufOTZ48eXj69CkAqVOnVtO6iHx09+/fB/6Tk/bt28eOHTvYsmULLVq0wNramlOnTpEtWzaaNm3K4cOHsbCwoFevXjRu3JiTJ0+qaV1EEg1vb2+6d+/OiBEj8PX1xdfXl8DAQLy9vXnz5g21a9cmIiKCRo0a4enpyb179xg6dChXr17liy++MPUMKB+KJG4///wzQUFBeHt7U758efz9/Zk2bRr9+vVj/fr19OvXj5CQEADq1q1L27ZtTbUk5QcR+ZDiTsTKli0bjo6OBAUFmT6zs7Ojbt263Lhxg6tXr5quq2ld/s3UuC5JWs6cOZkyZQoGg4G9e/earufKlQs3NzeaNGnCmDFjWLduXYLndCy0SNKzcuVKChYsyJkzZ7C1taVDhw7MmjWLSZMmmZrX446Oh/fHp8YVrUREPjVNPkXEnPLly4eXlxeVK1emSJEi5g5HRJKwP5qPlSpVis2bN2Nvb8/QoUN58eKF6V4LCwv69u3LrFmzmD17tunIdx2hKiL/q1y5cpEqVSpWrFjBAQqEUAAAMdpJREFUr7/+aroel5devnxJsmTJKFmypLlCFJEkplu3btSqVYsff/zRdC1DhgzUqlWLChUqEBgYSMeOHZkyZQrLly8nTZo0tGjRgp07d1K2bFk2b95sGhupCUtEPncrV67Ezc2NwMBA2rVrR7p06QBIkSIFTZs2Zdq0aTx9+pSuXbsC0KBBAwYPHkyePHkoVKiQ6XvUMyCS+GXMmJF69erx7bffcuLECfr06cP333/PjBkz6NmzJ0uXLqVr166EhYUleE61JBH5p35b244bd+TKlQtHR0fmzp3LlStXTJ9bWlpSsGBBHB0dEzynvgH5tzIY47aHFUnk4l5A/taLFy/w8fFh7NixjBgxghEjRpg+u337Nrt376Z79+4aWIokcVFRUVSpUoVnz56xevVqSpUqRUxMDD4+PvTt25fRo0cnyB8iIiIi8t6fzcVERD6m+LknMDCQX375hdSpU1O4cGG+/vprzp8/T506dShfvjzLli0jderUANqBRkQ+GD8/P1q3bo2zszMeHh58+eWXps9GjhzJDz/8wMGDB8mZM6cZoxSRpOLhw4eULVuWPHnyMH/+fFNOevnyJY6OjjRp0oQiRYowfvx44H2T5pUrVyhUqBA7d+7UGElEEo3g4GCcnJy4fPkyz549A/jdopywsDB69erFyZMnOXv2LClSpEjwHap1iSROf/Z3OyIiAjs7O0aOHMm1a9fw9fUlZcqUTJ48mTNnzvD27Vu2b9+uvCAiH0z8fLRo0SIuX77M8+fPad68Oc2aNePOnTtUqVKFfPnyUa1aNYoUKcLcuXMJDg7m7Nmz6nGUz4Ia1yVJiJ/QV6xYwZ07d3j06BFdu3alcOHCWFhYMHPmTCZMmICHhwfDhw//3XfExMQosYskEb8twsf9OTo6mmrVqnH//n3Wr19val5ftGiRaUV1p06dzBe4iIiIiIiIJODu7s6GDRvIli0b9vb2nD9/npUrV1KzZk0uXLhgal5fvHgxadOmNXe4IpKIxMTEsHjxYnr37s0XX3zBN998Q+bMmfnll1/YuXMn+/bto3jx4uYOU0SSgHfv3mFjY8OzZ88oXrz475rXnzx5QpkyZRg+fDg9evQgJCSE7t274+LiQp06ddSwLiKJSmxsLIcOHcLT05O3b99y8OBBHB0dTc3rcT0B27dvp2nTply/fp0cOXKoT0AkkYvfU7Ru3Tpu3rxJeHg4zZs3p0SJEsTGxtK8eXPCw8MJDAwkIiICZ2dnnJycaNu27e++Q0TkQxgyZAjLly/n22+/JTw8nICAAHr16sXUqVN59OgRI0aMICgoCFtbW7Jly4afnx/W1tbqcZTPghrXJUkZPHgwy5cvp1y5cvz6668EBwfj5uZGz549SZ48OXPnzmXy5Ml0796diRMnmjtcETGDyMhIbG1tAfD19aVatWrkzJkzQfP6t99+y6NHj1i7di2lSpUiOjqabdu20bBhQx2TKiIiIiIi8i/xww8/MGTIEDZv3ky5cuWYO3cuffv2ZfXq1bRq1QqACxcuUKJECdzd3Zk0aZKZIxaRxOjUqVNMmTKF69ev4+joSNGiRenTpw8FCxY0d2gikgQcPnyYM2fOEBUVxdChQ3ny5AklSpQgT548eHt7U7hwYQDatm1LUFAQrq6ubN68mXfv3nH48GEsLS3VhCUiiUbcuz6j0cjRo0cZMmQIERERHDp0CAcHhwTN6+PGjePo0aPs3bvX3GGLyCc0ZMgQNmzYQPHixUmRIgWrV69mzZo1ODs7s2vXLurXr0/p0qV5/fo1lpaWnD9/Xv0BIvJRHDp0iNatW+Pv70/p0qUBWL9+PW5ubnTr1o1JkyYRHh5OdHQ0b9++JWPGjKaeJuUl+RyoyiBJRmBgIGvWrGHPnj1s3bqVS5cu4ebmxsaNG1mxYgXJkyenY8eO9OrVi/Pnz6M1HSJJz+7du5k9ezanTp0iNDSUoUOH0qxZM+7fv28qZFlZWbFt2zZiYmLo168fx48fx8rKiqZNm2JlZUV0dLS5f4aIiIiIiEiSFlfTuXr1Ks2bN6dcuXJs3ryZYcOG4e3tTatWrXjz5g137tyhWLFiXL9+nfHjx5s5ahFJrMqWLcv69eu5fPkyR48eZc6cOWpaF5FPYsWKFXTr1o379++TJk0aADJmzMilS5e4f/8+3bt358cffwSgd+/eFCtWjCVLluDg4MDBgwfVtC4iiU7cCRIGg4GKFSvi5eWFnZ0dVapUISQkxNTk9erVK86cOUP58uXNGa6IfCKxsbEA+Pn5sXr1ajZs2MDmzZtp3bo18P40LYDatWsTGBhIiRIlaNmypalpPe5zEZF/4uLFi/j7+3Ps2DEAIiIiSJ48OdmyZSMmJgaj0YiTkxMzZsxg+vTpXLx4kWTJkmFvb0+mTJkwGAzExsaqaV0+G6o0SJLx+vVr7O3tyZIli2ngOWrUKOrWrcvUqVMJDQ0lY8aMDBo0iMDAQFOTqogkDb6+vnTu3JlffvkFCwsL7O3tOXv2LJGRkTRv3px79+6ZClo2NjYUKFCAEydOMGPGjATfo0GgiIiIiIjIpxe/hhP3wtBgMJA2bVq2bdtGhw4d8PLyolu3bhiNRvz9/Vm/fj1v374lX758WFpa6kWjiHw0FhYWCRqlREQ+tpUrV+Lq6sqECROYNGkS3bt3B2DKlCncvHmTCxcu8ODBA7p27crNmzcpX748q1ev5sCBA2zevBlra2uio6PVtC4iidYfNa+HhYUB70+hePbsGd999x2AegZEEqldu3bx8uVL03jn/v371KpVi9KlS7Nx40ZatWrFwoULadOmDa9eveLu3bvUqFGDOXPmMHr0aNOmdpaWlmb+JSLyuVu1ahWdOnVi6dKlbN++HQBLS0t+/fVXnj9/jqWlJe/evQOgUaNGZMmShVu3bv3uezR/k8+J/muVROnQoUNMnTo1wRHPkZGRvHz5EmtraywtLQkPDwdg2LBhhIeHc/jwYQAcHBxMTet6iSCSNKxdu5bevXszffp0Jk2aZDpmJ3v27AQGBhIeHk7Tpk25d+8esbGxplWNN2/eZN26dWaOXkREREREROJqOEuXLmXt2rUAZMqUiXnz5tG6dWu8vLxwdXUF3m9usGLFCl69ekWKFClM36EXjSLyscSvM6vmLCIf208//YSXlxczZsygefPm2NraAuDk5MTQoUPx9PTkxo0bXLhwgcePH+Pi4sLFixcBSJMmjXbqE5EkIa4XIK55PUWKFFSsWJFq1arx888/c/ToUdNOyhq/iSQ+oaGhDBw4kBIlShASEgJAWFgYL168YOPGjXTu3JkpU6aYFv9t2bKFCRMm8Pr16wSNoRovicg/FXdSloeHB8uXL2fChAkAfPvtt9SvX5927drx888/m+Z17969w8bGBjs7O3OGLfKPqXFdEp1ly5bRpUsX7t27R0REhOm6s7Mz6dKlo0WLFgAkS5YMgKdPn5I+fXrTMYlxNAEVSRqCg4Px9vZmypQpODk5kSpVKgDevHnDqVOnePbsGQEBASRLloxvvvmGrl27UqlSJc6ePUvu3LmxsLDQrnwiIiIiIiL/EkuXLmXlypUA9O3bl3r16hEdHc0XX3zBrVu3uHHjBs7Ozjx//pwxY8aYOVoRERGRD+/evXuEhoZSpUoV0wnEvXr1IigoiICAAAwGA56enly7do2goCBOnz6Nj49Pgu/QTn0iktjF38iuYsWKTJkyhdjYWJ4/f86VK1dMJ09ogbNI4mRvb8+GDRtInz495cuX5+XLl1SvXp27d+/Svn17Ro8ejZubG/C+b2DDhg3Y2Nhgb29v5shFJDG5evUqU6ZMYfbs2bRq1QpHR0fg/QI7S0tLBgwYQJYsWahRowZr1qxh7dq1uLi4YG9vT506dcwbvMg/ZDDqXCNJRNauXUvnzp1Zvnw5LVq0MDWfx8bGYmFhwaFDh3BxcSFDhgyMHTuW2NhY5s6dS3BwMMePH9fEUyQJCg4OpmrVqowfP54mTZoAsGDBAvbv38+mTZvIlCkTxYoVw9/fn0GDBvHkyRNsbW1ZsmQJ1tbWpvwiIiIiIiIi5hM3N7t48SINGzZk4sSJtG3blqioKFq0aMH58+d59eoVhQsXxtramv3792NtbU1MTIzqQSIiIpKojB8/nhkzZvDs2TPTtUePHhETE0O2bNn46aef6NatG+/evePUqVO8fPkSBwcHjYlEJEmLjY3l4sWLFC1aFAsLC6Kjo7WTskgiFVdDio6O5sGDBzg5OWFjY0NAQAAzZszAx8eH3r1707hxY16/fs3YsWN5/PgxZ86cwcrKyrToRUTkn9q9ezeurq4EBgaSL1++P8wtly5dYuHChaxbt44cOXKQNWtWNm/erNq2fPY00pZE49GjRyxYsICxY8fSsmXLBJ/FNZVWrFgRPz8/BgwYQJcuXUiZMiXZs2fn6NGjWFpaKqGLJFGvX79m+/btpEqVivnz53Pjxg0qVqzIrl27ePXqFQMHDmTBggXMnj07wXMqWomIiIiIiJjHb18SWlhYYDQayZYtG2XLluXYsWO0bdsWa2tr/P39OXnyJCEhIaRPn57ixYurEUFEREQSrbx58xIeHs6ePXuoWbMmAJkzZwbeN2oVKlSIRo0acejQIV6/fm06kVjvyEQkMfizhtL/1mhqNBqxsLCgePHipmuaK4okPs+fPydt2rRYWFjw7t07bGxsyJkzJ2nSpGHXrl3UqVOHwMBAIiIi8PPzw9PTk7Jly2Jvb8/p06exsrLSeElEPqhz584RGhpK/vz5gYTjlbhFNtbW1vTq1YupU6cSFRVFqlSpMBgMqm3LZ0//9Uqi8fbtW65evcqoUaP+8PO4AWSxYsU4cOAAN2/eJFmyZGTJkkUvK0WSsPTp07Ns2TKaN2/O/v37sbe3Z+bMmRQtWpS0adPy8uVL0qZNS3BwcILnjEajcoaIiIiIiMgnFle8jyvgL1++nKdPnzJkyBCMRiNp06bFycmJNm3a0KFDB8qVKwdg+mec2NhYzelEREQkUSpdujRWVlZ4e3uTP39+cubMafrMwsKC0NBQjhw5QoECBXBwcDB9piYsEfncxT8l+fbt21hbW2NlZUWWLFkwGAx/a5fkO3fukClTJuzs7D5FyCLyiRw5coRRo0YxZswYKleujI2NDQAtW7bkwYMH7Nmzh0GDBlG7dm0CAwMZPXo0Z86cIWfOnGTLlk09RSLyUeTNm5e3b9+ye/duatWq9buNWgCWLVvGy5cvWbBgAcmTJwdU25bEwcLcAYh8KHfv3uXFixfky5cPeJ+k47O0tOTWrVuMHz8egHz58pkGmEroIklb9erVuXnzJnv37uXChQtUq1aNtGnTmj63t7cne/bsCZ7R8V8iIiIiIiKf3tOnT7l37x4XLlzgwoULXLp0iSlTplCjRg2mTJnC27dvadmyJW3btmX+/Pm8fv36D78nrvAvIiIiktjkyZOHhQsXEhAQwPDhw7lw4YLps19//ZXmzZtz7949pkyZArxfGCgi8rmL37Q+ZswYnJycqFChAh07dmTt2rUApub1+OI3s8+ZM4cOHTrw8uXLTxu8iHx0GTJkwGg0MnnyZM6dOwdAixYt+Omnn9i+fTvVq1dnzZo1REZGUrVqVd6+fUulSpXIkSOHeopE5KMpWbIkNjY2+Pj4cPfuXdP1uPHK69evuX37Nl999VWChcaqbUtioP+KJdHImTMnadOmZeHChURERJiOiI7v1KlTHD9+nLCwsATXldBFJH369OTOnTvBteDgYNq3b8+7d+/o0qWLmSITERERERERgNWrV9OyZUvKli1LiRIl6NChA9HR0Vy+fJnChQvj5+dHgQIFWLFiBcmTJ+f+/fuEhISYO2wRERGRT87JyYm5c+eyYcMGGjZsSN26dalZsybOzs68fv2aM2fOYGVlRUxMjDZpEZFEIe59/3fffcfcuXMZN24cGzZswNHRERcXF5YtWwYkbF6P37Tu4+PDyJEj6dmzJ5kzZzbLbxCRj6dAgQIsWrSI2NhYvvvuOypVqsTPP/9MQECAaQO7QoUKsWbNGp4/f06/fv0SPK+eIhH5GOIvOh42bBhBQUHA+/HKw4cPadWqFY8fP8bNzc3MkYp8eFoOJonGF198QdmyZfH19aVUqVI0aNDAdLwPQHh4OFu2bKFgwYKmozNERP7Is2fPWLx4MUePHuXp06ccO3YMS0tLYmJidFyqiIiIiIiIGfj6+tKzZ0+mTZtGwYIFsbKywtfXl3nz5vHixQu8vb0BcHd3Z8WKFTx9+pQrV67www8/MHz4cDNHLyIiIvJpWVpa0rVrV0qVKsXixYu5ceMGOXPmpESJEvTo0QNLS0uio6O1c6iIJCrHjh1j586d+Pn5UalSJXbt2sWuXbuoVKkSvXv3xtLSkvbt22MwGBK88/P29sbd3R1fX1+aNWtm5l8hIh9Lvnz5mD17Nj179uTy5cssWrSIXLlyAf85taFgwYIcPXqUbNmymTdYEUkyWrZsyZs3b+jZsyeHDx+mSJEixMbG8urVK2JjYzl27Jhp0bH6lSQxMRh1/pskAnGDyJcvX1KxYkVev37N0KFD6dixI3Z2dvz0008MHDiQly9fcvLkSaysrBKsoBYRie/ChQuMHDmSL774gqlTp2JlZaUivoiIiIiIiJkEBQXRsmVLJkyYgJOTk+n68+fPWb9+PQMGDMDJyYkVK1aY7r969Spr1qxhy5YtWFtbmyt0ERERkX8lNT2ISGL08OFDFi5cyKhRozhw4ADt27dn7NixNGjQgCZNmhAUFMTMmTPp1auX6Zm4pvWlS5fSvHlzM0YvIp/K7du36dWrFxYWFgwfPpyKFSsC/+k7iqPxkoh8ShcuXGDp0qVcv36d7NmzU7x4cVxdXbXoWBItNa5LohE3iHz48CHNmzfnypUr2NrakiJFCtKkSYODgwN79uzB2tpaA0wR+UshISE4ODj8btcFERERERER+bS2bt3KqFGjCAwMJH369FhaWpo2JAgJCWHatGnMnj2bLVu28O233/7u+aioKDWvi4iISJKljZxEJDH6bYNpnNDQUOzt7Wnbti2ZM2dm8uTJWFpa0qFDBy5fvkzGjBnZuXMnBoOBVatW0a1bN3744QfttC6SxNy8eZO+ffsC4OnpyTfffGPmiERE/pj6lSSx+v1IXuQzZWFhgdFoJEuWLJw4cYLly5czePBgevfuzcSJE9m/fz/W1tZER0croYvIX3J0dMRgMGA0GpUzREREREREzCgoKIjHjx+TKVOmBE3r8H7u1r59e8LCwnjw4MEfPq+mdREREUnK1LQuIolN/Kb1Y8eO4efnx4EDBwgODsbe3p6QkBDOnz+PnZ0dlpaWvHnzhvDwcEaNGmVqWgfImzcvfn5+aloXSYLy5cvH7NmzsbS0pH///ly6dMncIYmI8Ef7T6tfSRIrnSEgiUr8nZH/aIIZExOjozNE5H+ior6IiIiIiIh5FSpUiNDQUHbv3k2tWrV+N0/LkycPmTJl4s2bN2aKUERERERERD6VuKZ1Dw8PtmzZgsFgIFu2bDx+/Jht27aRO3duGjVqxMqVK4mMjOTUqVOEh4fTqFEjDAYDsbGxGAwGypYta+ZfIiLmlC9fPry8vFi8eDFFihQxdzgiIupPkiRFO67LZyH+iqK4f/+jVUbw31caaRWSiIiIiIiIiMjnpVSpUlhbW+Pj48Pdu3dN12NiYgC4e/cu6dKlI3/+/OYKUURERERERD6hBQsWsGzZMpYvX861a9eoVq0aP/74I5cvXwagffv2ODk5ceLECbJly8bx48extLQkJiYGCwsLNYaJCPB+s4Rp06ZhYWFBbGysucMRERFJMgzGP+v+FfmXiH/UV2RkJJGRkaRKlcr0efzjoeP7s+siIiIiIiIiIvJ5WbNmDS4uLjRv3pxBgwZRokQJAMLCwnByciI0NJQDBw6YakgiIiIiIiKSeMTvGQDo3r07uXPnZtiwYWzdupW2bdsyY8YMunbtSnh4OADJkiUjIiICW1tbDAYD0dHROp1dRERERORfQKNy+VeLPwGdMmUK+/fv586dO1SqVIkePXpQsmTJv2xa37RpE1mzZqVcuXKfNHYREREREREREfkwWrZsydu3b+nVqxeHDh2iaNGiODo6cvfuXUJDQzlz5gwWFhbExMToxD0REREREZFExGg0mnoGzp8/T+HChYmMjMTBwYGAgADatm2Ll5cXXbt2JSYmhlWrVgHQoUMH7OzsTN+hpnURERERkX8HbUEk/2pxE1BPT09mzJhBo0aNWLJkCatXr+a7777j8ePHv3smftO6j48PLVu2JCws7JPGLSIiIiIiIiIiH46VlRVdu3bl1KlTNG7cmPDwcKytrWnQoAFnz57F2tqa6OhoNa2LiIiIiIgkIvHf/Q8ePBg3NzceP35MxowZmTlzJu3atcPLywtXV1cAXrx4wcaNGwkJCcHGxsb0PTqpXURERETk30NLSuVf7/r16/j7+7Ny5Upq1KjByZMniY2NpVmzZmTOnDnBvfEnrt7e3nh4eLBx40aqVatmjtBFREREREREROQDKlasGPPmzfvd9ZiYGO2eJyIiIiIiksjEvft/+PAhV69eZfLkyeTKlYtx48Zx8OBBwsLCqFy5Mi9evCA8PJyuXbsSEhJC//79zRu4iIiIiIj8Ke24Lv86sbGxCf4cERGBwWCgRo0abNmyhZo1azJjxgz+X3t3H21lWacP/NrnxZNhw4FwXCjgSCCCEugwYoZYrFEzERDQcRYOjhiHt7SUojJWmsjo2Kx8G14FghCbJkqXnhDX0UKUfIEE8SWQBmMGnIBEEcWQfc7+/eHy/DRtphhwA34+/z3P3vtZ33ut88d51rru67700kuzY8eO3H333WlsbHxPaH3ChAmZPXt2Bg8eXI5lAAAAALAPlEql99zTtA4AAHBw+u53v5uzzjorv//979OlS5ckSU1NTRYuXJjDDjssgwYNyvHHH5/zzz8/27Zty8MPP5yqqqo0NjaWeXIAAOD9qCFiv1NR8dZ+ihdeeCHHHHNMWrVqlddffz1f//rXM3369Hcd9bVmzZrccsstadeuXXr16pUkueWWWzJp0qTMmTMnQ4YMKds6AAAAANj7HPEOAABwcHpnWd3b+vTpk1tvvTUbNmzI1q1b07Zt25RKpXTo0CHPPvts6uvrs23btrRv3z6f/exnU1lZmWKx6FQuAADYTxVK71dRBGV2//33Z+DAgXnqqafSpUuXXHnllZk5c2aGDx+eqVOnJkl27dqVoUOHplAo5O67705FRUV+97vf5fjjj8/NN9+cv//7vy/zKgAAAAAAAACAP0VjY+O7TtRqampKRUVFVq1albPPPjt//dd/nfnz56dVq1bv+e4fewYAALB/scWU/VL79u3Tq1evPPHEE+nSpUsuuOCCvPDCC3nggQcyceLE1NTU5KGHHsrmzZvz5JNPpqKiIsViMW3atMnatWtTW1tb7iUAAAAAAAAAAH+CuXPn5vvf/36uvvrqHH300fmrv/qr5tPae/bsmfr6+nzuc5/LpZdemjlz5jRnAv6wpV1oHQAA9m8a1ym7t3dJ/6ERI0bk8ccfz7PPPpskWb58eRoaGjJv3rx06dIlHTp0yM0335yqqipHfQEAAAAAAADAAahYLOZTn/pUnn/++ZxyyimprKxMnz59UldXlzZt2jR/b8WKFTn77LNz+umn5/bbb0+rVq3KODUAALAnBNfZb2zbti1/8Rd/0RxA37p1az796U+nrq4uX/nKV5q/t2vXrtTU1DRfO+oLAAAAAAAAAA5cs2bNyqZNmzJo0KCsW7cu48ePT69evdKqVatcd911+djHPpYWLVpkxYoVOfnkk/O1r30t119/fbnHBgAA/kzvrbmGD0Dfvn1z2223NV/ffvvt6dGjR775zW/m17/+dZKkdevWOeOMM/KLX/wixWIxyVsh9UMOOaT5d6VSSWgdAAAAAAAAAA5gPXv2zIwZM7J169YMHTo0GzZsyIABAzJnzpyceeaZufLKK/Ozn/0svXr1ytq1a3PdddeVe2QAAGAPaFznA9fY2Jj6+vp87nOfa25O37VrV7797W9n9erV+fnPf56vfOUrGTRoUA4//PB06tQp8+fPz/nnn1/myQEAAAAAAACAvalUKqVQKOTqq6/Oo48+msWLF6eioiLdu3fPMccck379+mX58uX5wQ9+kGuvvTYTJ05M4nR2AAA4EAmuU1b/9E//lE2bNmXKlClJktdeey0LFizID3/4w6xfvz7nnntunn766VRWVubf/u3fcvjhh5d5YgAAAAAAAABgb/vZz36WSZMm5aabbsoll1ySFi1apL6+PrW1tWlqasqyZcvyqU99KlVVVeUeFQAA2EMV5R6AD7fa2tpMmzYt3/zmN5Mkhx12WEaNGpW5c+dm+vTpeeyxx7J06dIUCoW0adOmzNMCAAAAAAAAAPtCv3798tGPfjQnnXRSWrdu3RxaT5JCoZDTTjstVVVVKRaL5R0UAADYY7ah8oF54okncthhh6Vbt24ZP358PvOZz6Suri4tWrTIyJEjkySTJ09OknTo0CEdOnTIZz/72SxZsiR/+7d/m0KhkKamplRU2G8BAAAAAAAAAAeLt7MAV111VTZv3pzLL788tbW1KZVKKRQKKRQKzd/VuA4AAAcu/83zgXjhhRcyYsSIfPrTn87u3bszd+7cXHzxxamqqsqwYcPS1NSUUaNGJfn/4fXdu3enpqYmZ511VpKksbExlZWVZVsDAAAAAAAAALD3vV1g161bt1RUVKShoSEDBw58V2AdAAA48BVKpVKp3EPw4fDDH/4wX/7yl7Nt27b84Ac/yODBg5t3R+/evTt33HFHRo8enQkTJmTSpEnlHhcAAAAAAAAA+IC8nR+or6/PgAED8sgjj+TUU08t91gAAMBepHGdfe7tI73atm2b2tra1NbW5oEHHkinTp3yyU9+MklSXV2diy66KIVCISNGjEi7du2aG9gBAAAAAAAAgAPP22H0P3b9Tm/f79SpU770pS+ld+/eH8iMAADAB0fjOvvMH75w7tq1K0mycOHCfPe7382JJ56YL33pS+nevfu7frNo0aKcddZZqaqyrwIAAAAAAAAADkTvzAzMnj07xx57bE477bT/Mbz+h78tFouyAwAAcBCpKPcAHJyampqaXzQ3bdqU559/PhUVFampqcmwYcMyduzYrFy5MlOmTMnq1auTJIMGDUpDQ0POOeecVFVVpVgslnMJAAAAAAAAAMAeeGdmYOXKlZk3b17Gjh2bVatWpVAo5I91LDY2NiZ5q329oaEhGzZs+MBmBgAA9j2N6+x1TU1Nqah4a0/E1VdfncWLF+fpp5/O4MGDc8YZZ+Tiiy9OksyZMyczZsxI8tZu6RdffDEvvPBCqquryzY7AAAAAAAAALDn3tmo/u1vfztPPfVUNm7cmNWrV6dbt26ZNm1aevfu/Z7m9XdeT58+PWPHjs1jjz2Wk08+uSzrAAAA9j7BdfaaP3ypvPrqqzNt2rTMnDkz7dq1y4QJE7Jly5bU1dXl8ssvT5Lcc889efbZZ/PSSy/lhhtuaG5ad9QXAAAAAAAAABy4pkyZkq997Wv56U9/mmOPPTZLlizJvHnzsmXLlkyfPj0nn3xyc87gnXmDGTNm5Bvf+EZmzpyZoUOHlnkVAADA3iS4zl7x4osv5sgjj2xuW1+2bFnGjBmTf/3Xf03fvn2zdOnSnHXWWenVq1e2b9+eMWPGZMyYMe95TmNjYyorK8uwAgAAAAAAAABgb2hqaso//uM/5pBDDsmsWbOa7zc0NGTixInZvXt3Zs+enRNPPDHFYjGVlZUpFAqZMWNGJkyYkDlz5mTIkCFlXAEAALAvVJR7AA58kydPTrt27bJ27dpUVLz1J9W5c+dceumlOeWUU9LQ0JAhQ4Zk6tSpueuuu/L73/8+N910UyZPnvyeZwmtAwAAAAAAAMCBraKiIi1btsyvf/3r7Ny5s/n+GWeckXPPPTerVq1KXV1dVqxYkaqqqhQKhUyZMiVXXXWV0DoAABzEBNf5P7voootyzjnn5DOf+UzWrFmTJGnTpk2+8IUvpLKyMjNmzEhdXV2GDx+eNm3a5JOf/GRqamqyZcuWKPwHAAAAAAAAgANXU1PT+97v3r17Nm7cmPvuuy9vvPFG8/0uXbrkvPPOyyc+8YncfPPNeeWVV7JmzZpcdtllmTZtmtA6AAAcxKrKPQAHvqOPPjrTp09PXV1d+vbtm6VLl+a4445LixYt0tjYmA0bNqRjx46prKzM7t27c8ghh2TixIm54IILUigUUiqVUigUyr0MAAAAAAAAAODP0NTU1Hwy+49//OO88cYbOfTQQzNkyJDU1dWloaEh48ePz44dO3LaaaeldevWueOOO9K7d++0bNky3/rWt/Lyyy/nuOOOy3/8x3/kmGOOKfOKAACAfalQUnnNXrJx48bmo7zeDq9v3749V1xxRX7zm9/khBNOyHPPPZeXXnopv/zlL1NRUfGul1gAAAAAAAAA4MDwzpK6r371q5k5c2bat2+fdevWZfjw4bn99tuTJMOHD8/KlSuzcePGHHHEESmVSlm7dm2efvrpDB48OPX19enSpUs5lwIAAHxABNfZI38scL5ly5b8wz/8Q1auXJmHHnooXbt2zZNPPpmpU6dm/fr1+fjHP54777wz1dXVQusAAAAAAAAAcAB6Z2j9t7/9bYYMGZJp06alTZs2efLJJzNs2LD0798/CxYsSJI88cQT+c1vfpOqqqoMHDgwlZWVueyyy/Loo4/mgQceSG1tbRlXAwAAfFAE1/mzvTNwfuedd2bdunVpbGxMnz59cuaZZ2bbtm256KKLsnz58ixdujRdu3bN66+/nkMPPTSFQiGFQiHFYjFVVVVlXgkAAAAAAAAA8KfasGFDjj766Obr66+/Pr/4xS/SunXrTJ8+PYceemiSpKGhIUOHDs2AAQMyf/78dz1j2bJlmTt3bu666648+OCD6dGjxwe6BgAAoHzUXfNnezu0PmHChIwfPz6bNm3Kk08+mTFjxmTSpElp3bp1Zs6cmd69e6dfv355+umn06JFi1RUVKRQKKRUKgmtAwAAAAAAAMABZPTo0bnsssuar0ulUlq1apWHHnooq1atSk1NTfP9M844Iz/+8Y+zaNGiDBgwIO/sVNy9e3c2btyYJUuWCK0DAMCHjMZ19si9996bL37xi/n3f//39O7dOwsWLMgXvvCFzJo1K8OGDUuSbN68Oeeee27+8i//MvX19WWeGAAAAAAAAADYUzt27MhHPvKRVFdX56WXXsrHP/7x7Nq1Kz/60Y9y6aWX5oorrsgNN9zwrt/U19fn1ltvzeLFi5tL8pLkjTfeaG5nBwAAPjzUXrNH1q9fn27duqV3795ZuHBhxowZk5tuuinDhg3La6+9ljVr1qRXr15ZtGhRWrduXe5xAQAAAAAAAIA9VCqV8rGPfSxJ8r3vfS/jx4/PI488km7duuXCCy/Mm2++mVGjRqWysjKTJ09u/l3//v3Tv3//JElTU1NzeF1oHQAAPpwE1/lf/fznP8/DDz+cpqamnHrqqTnzzDNTU1OT9u3b5/77788ll1yS73znOxk9enSSZPHixXnqqafSqVOntGnTJsm7X0ABAAAAAAAAgANDY2NjKisrm6+HDh2aqVOnZsiQIfnJT36Srl27Zvjw4UmSMWPGpKKiIpMmTXrPc2QGAACAQqlUKpV7CPZfs2bNylVXXZUePXrk+eefT6lUyqxZs9K2bdv06NEjyVu7qS+++OIkyc6dO3PeeeelY8eOmTp1agqFQjnHBwAAAAAAAAD20DtL6r7xjW+ksbExN954Y7Zv355zzjknmzdvzj333JOuXbumWCzmjjvuyIgRIzJ9+vTU1dWVeXoAAGB/Yzsrf9SsWbMybty4TJ06NQ0NDZk7d25effXVLFiwIN27d8+0adNSWVmZ3/72t3n88cfz2GOP5bzzzsvmzZtz2223pVAoxL4IAAAAAAAAADjwvDO0PmHChPzzP/9z5syZky1btqRly5apr6/PEUcckQEDBmTNmjWpqqrKRRddlHvvvTcjRowo8/QAAMD+SOM672vJkiXp169frrnmmnzrW99qvn/UUUflmGOOyaJFi7J79+48+OCDGTduXD7ykY+kdevWOfLII3PPPfekurr6PceFAQAAAAAAAAD7v1Kp1HzC+hVXXJE777wzN954Y6699tosXbo0Rx11VJLklVdeybnnnputW7fmRz/6Ubp37978jGKxmKqqqrLMDwAA7J80rvO+jjrqqPTp0ye//OUvs2LFiiTJ4MGDs3Xr1rRs2TKf//znM3z48OzcuTOzZs3KT37yk9x333356U9/murq6hSLRaF1AAAAAAAAADgAvR1av+yyyzJ37tzcf//9GThwYBobG9PU1JTkrUb22tra3HvvvSkWi7nuuuve9QyhdQAA4A95S+B9de7cObNnz87ll1+ea665Jtu3b8/OnTuzYsWKHHfccXnkkUeydu3aXHPNNXn99ddz4YUX5rbbbkvy1supF1AAAAAAAAAAOHC9/vrrWb9+fZYsWZIePXrk1VdfTWNjY5577rm0b98+FRVvdSXW1tbmmWeeSXV1dZknBgAA9neFUqlUKvcQ7L/WrVuXsWPHZvny5Zk5c2YuuOCCd32+ffv2rFq1Kn369NGwDgAAAAAAAAAHqFKp1Ny0/rZisZiqqqo0NTVl586dOf744zNp0qQMHz48SXLqqafmwgsvzOWXX54kaWxslB0AAAD+qIpyD8D+rXPnzpk+fXpOOeWUzJ07N4888kjzZ8ViMS1btszpp5+eysrKNDY2lnFSAAAAAAAAAGBPNDU1NYfWN23alG3btuXll19uDq0nyWGHHZZOnTpl586dSZLPf/7z2bx5c0aPHt38HKF1AADgfyK4zv/qE5/4RG677baUSqVMnjw5y5YtS5JUVVW963teQAEAAAAAAADgwNLU1JSKirfiI5MnT87555+fU045JSNGjMijjz7a/FmS1NbW5plnnsngwYOzbt26rFmzJoccckiKxWK5xgcAAA4gguv8STp37pxbb701lZWV+fKXv5zVq1eXeyQAAAAAAAAA4P+gVCo1B9MnTpyYW265JVdeeWX+5V/+Ja+99loGDx6chx56KBUVFWlqakqLFi0yderU/Od//meee+65VFdXp1gsvqf4DgAA4P0IrvMn69y5c77zne+kb9++OeGEE8o9DgAAAAAAAACwBzZu3JgkKRQKSZIHH3wwixYtyt13352hQ4emuro6jz/+eNq1a5fzzjsvS5cuTUVFRcaNG5eBAwfmscceE1oHAAD+bIVSqVQq9xAcmN55XBgAAAAAAAAAsP8bOXJkli1bloULF6Zbt25JkqeffjoLFizIDTfckMWLF2f48OG59tpr07dv3wwYMCCvvvpq5s2bl7PPPrv5OULrAADAn0twHQAAAAAAAADgQ+LFF19M796907Fjx0ydOjXHH398kuTll19ObW1tBg0alBNOOCGTJ09OkvTv3z/PPPNMunbtmvvuuy+lUqm5qR0AAODPoS4bAAAAAAAAAOBD4M0338yRRx6ZlStXZv369Rk7dmyeffbZJEmrVq2yZcuWrFq1Kh06dEiSvPLKK/noRz+aadOmZdGiRUkitA4AAOwxjesAAAAAAAAAAAe5pUuXZvny5dm9e3e+/vWvZ/PmzTnppJPSsWPHzJgxI926dUuSDBs2LCtXrszo0aNz11135c0338zSpUtTWVmZpqamVFToSAQAAPaMtwkAAAAAAAAAgIPY97///YwcOTIbN25M69atkyRHHHFEVq9enY0bN6auri7PPfdckuSLX/xievbsmdmzZ6dly5ZZsmSJ0DoAALBXaFwHAAAAAAAAADhIzZ8/P6NGjcr8+fPTv3//1NTUJEluvPHG9O3bN127dk3Pnj3Ttm3bzJs3L507d06SbNu2La1atUqhUEixWExVVVU5lwEAABwEBNcBAAAAAAAAAA5Cv/rVr/J3f/d3GTduXEaNGtV8/4ILLsjChQvTr1+/XH/99Tn22GNz4okn5sgjj8yUKVPSo0eP5u9qWgcAAPYWbxYAAAAAAAAAAAeh//qv/8qOHTty+umnp6mpKUkybty4rFy5MvX19SkUCpk4cWLWrFmTlStX5oknnsjMmTPf9QyhdQAAYG/RuA4AAAAAAAAAcBCaPHlybrrppvzud79rvvff//3faWxsTLt27fKrX/0qI0eOzJtvvpnHH388L7/8clq2bJnKysoyTg0AABysbIsFAAAAAAAAADgIderUKW+88UYaGhqa77Vt2zbt2rVLU1NTunbtmgEDBuTwww/Pq6++mtatW6eysjKNjY1lnBoAADhYCa4DAAAAAAAAAByE/uZv/iZVVVWZMWNGNmzY8K7PKioqsmPHjjz88MPp0qVLWrZs2fyZxnUAAGBfqCr3AAAAAAAAAAAA7H0dO3bM9OnTc8kll6SmpiZf/epX07NnzyTJhg0bMnLkyGzZsiV33XVXkqRUKqVQKJRxYgAA4GBWKJVKpXIPAQAAAAAAAADA3tfY2Jjvfe97GTt2bI444oiccMIJKRaL2bFjR5Lk4YcfTnV1dRobGzWtAwAA+5TgOgAAAAAAAADAQW7VqlWZNWtWnn/++XTo0CEnnXRSRo0alcrKyhSLxVRVVZV7RAAA4CAnuA4AAAAAAAAA8CGlaR0AAPigCK4DAAAAAAAAAHwIlEqlFAqFco8BAAB8SFWUewAAAAAAAAAAAPY9oXUAAKCcBNcBAAAAAAAAAAAAANinBNcBAAAAAAAAAAAAANinBNcBAAAAAAAAAAAAANinBNcBAAAAAAAAAAAAANinBNcBAAAAAAAAAAAAANinBNcBAAAAAAAAAAAAANinBNcBAAAAAAAAAAAAANinBNcBAAAAAAAAAAAAANinBNcBAAAAAAAAAAAAANinBNcBAAAAAAAAAAAAANinBNcBAAAAAAAAAAAAANin/h+wDtneiPVZvwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "