forked from cmusatyalab/openface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot-loss.py
executable file
·76 lines (67 loc) · 2.63 KB
/
plot-loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python3
#
# Copyright 2015 Carnegie Mellon University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
plt.style.use('bmh')
import numpy as np
import pandas as pd
import os
import sys
scriptDir = os.path.dirname(os.path.realpath(__file__))
plotDir = os.path.join(scriptDir, 'plots')
workDir = os.path.join(scriptDir, 'work')
def plot(workDirs):
trainDfs = []
testDfs = []
for d in workDirs:
trainF = os.path.join(workDir, str(d), 'train.log')
testF = os.path.join(workDir, str(d), 'test.log')
trainDfs.append(pd.read_csv(trainF, sep='\t'))
testDfs.append(pd.read_csv(testF, sep='\t'))
if len(trainDfs[-1]) != len(testDfs[-1]):
print("Error: Train/test dataframe shapes "
"for '{}' don't match: {}, {}".format(
d, trainDfs[-1].shape, testDfs[-1].shape))
sys.exit(-1)
trainDf = pd.concat(trainDfs, ignore_index=True)
testDf = pd.concat(testDfs, ignore_index=True)
print("train, test:")
print("\n".join(["{:0.2e}, {:0.2e}".format(x, y) for (x, y) in
zip(trainDf['avg triplet loss (train set)'].values[-5:],
testDf['avg triplet loss (test set)'].values[-5:])]))
fig, ax = plt.subplots(1, 1)
trainDf.index += 1
testDf.index += 1
trainDf['avg triplet loss (train set)'].plot(legend='True', ax=ax)
testDf['avg triplet loss (test set)'].plot(legend='True', ax=ax, alpha=0.6)
plt.legend(['Train loss, semi-hard triplets',
'Test loss, random triplets'])
plt.xlabel("Epoch")
plt.ylabel("Loss")
# plt.ylim(ymin=0)
plt.xlim(xmin=1)
plt.grid(b=True, which='major', color='k', linestyle='-')
plt.grid(b=True, which='minor', color='k', linestyle='--', alpha=0.2)
ax.set_yscale('log')
fig.savefig(os.path.join(plotDir, "loss.pdf"))
if __name__ == '__main__':
os.makedirs(plotDir, exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument('workDirs', type=int, nargs='+')
args = parser.parse_args()
plot(args.workDirs)