-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadahessian.py
156 lines (133 loc) · 6.11 KB
/
adahessian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#*
# @file Different utility functions
# Copyright (c) Zhewei Yao, Amir Gholami, Sheng Shen
# All rights reserved.
# This file is part of AdaHessian library.
#
# AdaHessian is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# AdaHessian is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with adahessian. If not, see <http://www.gnu.org/licenses/>.
#*
import math
import torch
from torch.optim.optimizer import Optimizer
from copy import deepcopy
import numpy as np
class AdaHessian(Optimizer):
"""Implements Adahessian algorithm.
It has been proposed in `ADAHESSIAN: An Adaptive Second OrderOptimizer for Machine Learning`.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 0.15)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-4)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
hessian_power (float, optional): Hessian power (default: 1)
"""
def __init__(self, params, lr=0.15, betas=(0.9, 0.999), eps=1e-4,
weight_decay=0, hessian_power=1):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(
betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(
betas[1]))
if not 0.0 <= hessian_power <= 1.0:
raise ValueError("Invalid Hessian power value: {}".format(hessian_power))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, hessian_power=hessian_power)
super(AdaHessian, self).__init__(params, defaults)
def get_trace(self):
"""
compute the Hessian vector product with a random vector v, at the current gradient point,
i.e., compute the gradient of <gradsH,v>.
:param gradsH: a list of torch variables
:return: a list of torch tensors
"""
params = self.param_groups[0]['params']
gradsH = [p.grad for p in params]
# if torch.device(params[-1]) == 'cuda':
# v = [torch.randint_like(p, high=2, device='cuda') for p in params]
# else:
v = [torch.randint_like(p, high=2) for p in params]
for v_i in v:
v_i[v_i == 0] = -1
hvs = torch.autograd.grad(
gradsH,
params,
grad_outputs=v,
only_inputs=True,
retain_graph=True)
hutchinson_trace = []
for hv, vi in zip(hvs, v):
param_size = hv.size()
if len(param_size) <= 2: # for 0/1/2D tensor
tmp_output = torch.abs(hv * vi)
hutchinson_trace.append(tmp_output) # Hessian diagonal block size is 1 here.
elif len(param_size) == 4: # Conv kernel
tmp_output = torch.abs(torch.sum(torch.abs(
hv * vi), dim=[2, 3], keepdim=True)) / vi[0, 0].numel() # Hessian diagonal block size is 9 here: torch.sum() reduces the dim 2/3.
hutchinson_trace.append(tmp_output)
return hutchinson_trace
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
gradsH: The gradient used to compute Hessian vector product.
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
# get the Hessian diagonal
hut_trace = self.get_trace()
for group in self.param_groups:
for i, p in enumerate(group['params']):
if p.grad is None:
continue
grad = deepcopy(p.grad.data)
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of Hessian diagonal square values
state['exp_hessian_diag_sq'] = torch.zeros_like(p.data)
exp_avg, exp_hessian_diag_sq = state['exp_avg'], state['exp_hessian_diag_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_hessian_diag_sq.mul_(beta2).addcmul_(
1 - beta2, hut_trace[i], hut_trace[i])
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
# make the square root, and the Hessian power
k = group['hessian_power']
denom = (
(exp_hessian_diag_sq.sqrt() ** k) /
math.sqrt(bias_correction2) ** k).add_(
group['eps'])
# make update
p.data = p.data - \
group['lr'] * (exp_avg / bias_correction1 / denom + group['weight_decay'] * p.data)
return loss